

	

Chapter 1
Introduction
This chapter briefly introduces JavaScript, Netscape's cross-platform, object-based scripting language for client and server applications.
JavaScript lets you create applications that run over the Internet. Using JavaScript, you can create dynamic HTML pages that process user input and maintain persistent data using special objects, files, and relational databases. You can build applications ranging from internal corporate information management and intranet publishing to mass-market electronic transactions and commerce. Through JavaScript's LiveConnect functionality, your applications can access Java and CORBA distributed object applications.
Server-side and client-side JavaScript share the same core language. This core language corresponds to ECMA-262, the scripting language standardized by the European standards body, with some additions. The core language contains a set of core objects, such as the Array and Date objects. It also defines other language features such as its expressions, statements, and operators. Although server-side and client-side JavaScript use the same core functionality, in some cases they use them differently..
The components of JavaScript are illustrated in Figure 1.1.
Figure 1.1 The JavaScript language.
[image: lang]
Client-side JavaScript (or Navigator JavaScript) encompasses the core language plus extras such as the predefined objects only relevant to running JavaScript in a browser. Server-side JavaScript encompasses the same core language plus extras such as the predefined objects and functions only relevant to running JavaScript on a server.
Client-side JavaScript is embedded directly in HTML pages and is interpreted by the browser completely at runtime. Because production applications frequently have greater performance demands upon them, JavaScript applications that take advantage of its server-side capabilities are compiled before they are deployed. The next two sections introduce you to how JavaScript works on the client and on the server.

Client-Side JavaScript
Web browsers such as Netscape Navigator 2.0 (and later versions) can interpret client-side JavaScript statements embedded in an HTML page. When the browser (or client) requests such a page, the server sends the full content of the document, including HTML and JavaScript statements, over the network to the client. The client reads the page from top to bottom, displaying the results of the HTML and executing JavaScript statements as it goes. This process produces the results that the user sees and is illustrated in Figure 1.2.
Figure 1.2 Client-side JavaScript.

Client-side JavaScript statements embedded in an HTML page can respond to user events such as mouse clicks, form input, and page navigation. For example, you can write a JavaScript function to verify that users enter valid information into a form requesting a telephone number or zip code. Without any network transmission, the embedded JavaScript on the HTML page can check the entered data and display a dialog box to the user who enters invalid data.
Server-Side JavaScript
On the server, JavaScript is also embedded in HTML pages. The server-side statements can connect to relational databases from different vendors, share information across users of an application, access the file system on the server, or communicate with other applications through LiveConnect and Java. A compiled JavaScript application can also include client-side JavaScript in addition to server-side JavaScript.
In contrast to pure client-side JavaScript scripts, JavaScript applications that use server-side JavaScript are compiled into bytecode executable files. These application executables are run in concert with a web server that contains the JavaScript runtime engine. For this reason, creating JavaScript applications is a two-stage process.
In the first stage, shown in Figure 1.3, you (the developer) create HTML pages (which can contain both client-side and server-side JavaScript statements) and JavaScript files. You then compile all of those files into a single executable.
Figure 1.3 Server-side JavaScript during development.
[image: ssdev]
In the second stage, shown in Figure 1.4, a page in the application is requested by a client browser. The runtime engine uses the application executable to look up the source page and dynamically generate the HTML page to return. It runs any server-side JavaScript statements found on the page. The result of those statements might add new HTML or client-side JavaScript statements to the HTML page. It then sends the resulting page over the network to the Navigator client, which displays the results.
Figure 1.4 Server-side JavaScript during runtime.
[image: ssrt]
In contrast to standard Common Gateway Interface (CGI) programs, all JavaScript is integrated directly into HTML pages, facilitating rapid development and easy maintenance. JavaScript's Session Management Service contains objects you can use to maintain data that persists across client requests, multiple clients, and multiple applications. JavaScript's LiveWire Database Service provides objects for database access that serve as an interface to Structured Query Language (SQL) database servers.
JavaScript Objects
JavaScript has predefined objects for the core language, as well as additions for client-side and server-side JavaScript.
JavaScript has the following core objects:
Array, Boolean, Date, Function, Math, Number, Object, String
The additional client-side objects are as follows:
Anchor, Applet, Area, Button, Checkbox, document, event, FileUpload, Form, Frame, Hidden, History, Image, Layer, Link, Location, MimeType, navigator, Option, Password, Plugin, Radio, Reset, screen, Select, Submit, Text, Textarea, Window
These objects represent information relevant to working with JavaScript in a web browser. Many of these objects are related to each other by occurring as property values. For example, to access the images in a document, you use the document.images array, each of whose elements is a Image object. Figure 1.5 shows the client-side object containment hierarchy.
Figure 1.5 Containment relationships among client-side objects
[image: nav_hier]
The server-side objects are:
blob, client, Connection, Cursor, database, DbPool, File, Lock, project, request, Resultset, SendMail, server, Stproc

As shown in Figure 1.6, some of the additional server-side objects also have a containment hierarchy.
Figure 1.6 Containment relationships among LiveWire objects
[image: contain]
JavaScript Security
Navigator version 2.02 and later automatically prevents scripts on one server from accessing properties of documents on a different server. This restriction prevents scripts from fetching private information such as directory structures or user session history.
JavaScript for Navigator 3.0 has a feature called data tainting that retains the security restriction but provides a means of secure access to specific components on a page.
· When data tainting is enabled, JavaScript in one window can see properties of another window, no matter what server the other window's document was loaded from. However, the author of the other window taints (marks) property values or other data that should be secure or private, and JavaScript cannot pass these tainted values on to any server without the user's permission.
· When data tainting is disabled, a script cannot access any properties of a window on another server.
In Navigator 4.0, data tainting has been removed. Instead, Navigator 4.0 provides signed JavaScript scripts for more reliable and more flexible security.

Chapter 2
Operators
JavaScript has assignment, comparison, arithmetic, bitwise, logical, string, and special operators. This chapter describes the operators and contains information about operator precedence.
Table 2.1 summarizes all of the JavaScript operators.
Table 2.1 JavaScript operators.
	Operator Category
	Operator
	Description

	Arithmetic Operators
	+
	(Addition) Adds 2 numbers.

	
	++
	(Increment) Adds one to a variable representing a number (returning either the new or old value of the variable)

	
	-
	(Unary negation, subtraction) As a unary operator, negates the value of its argument. As a binary operator, subtracts 2 numbers.

	
	--
	(Decrement) Subtracts one from a variable representing a number (returning either the new or old value of the variable)

	
	*
	(Multiplication) Multiplies 2 numbers.

	
	/
	(Division) Divides 2 numbers.

	
	%
	(Modulus) Computes the integer remainder of dividing 2 numbers.

	String Operators
	+
	(String addition) Concatenates 2 strings.

	
	+=
	Concatenates 2 strings and assigns the result to the first operand.

	Logical Operators
	&&
	(Logical AND) Returns true if both logical operands are true. Otherwise, returns false.

	
	||
	(Logical OR) Returns true if either logical expression is true. If both are false, returns false.

	
	!
	(Logical negation) If its single operand is true, returns false; otherwise, returns true.

	Bitwise Operators
	&
	(Bitwise AND) Returns a one in each bit position if bits of both operands are ones.

	
	^
	(Bitwise XOR) Returns a one in a bit position if bits of one but not both operands are one.

	
	|
	(Bitwise OR) Returns a one in a bit if bits of either operand is one.

	
	~
	(Bitwise NOT) Flips the bits of its operand.

	
	<<
	(Left shift) Shifts its first operand in binary representation the number of bits to the left specified in the second operand, shifting in zeros from the right.

	
	>>
	(Sign-propagating right shift) Shifts the first operand in binary representation the number of bits to the right specified in the second operand, discarding bits shifted off.

	
	>>>
	(Zero-fill right shift) Shifts the first operand in binary representation the number of bits to the right specified in the second operand, discarding bits shifted off, and shifting in zeros from the left.

	Assignment Operators
	=
	Assigns the value of the second operand to the first operand.

	
	+=
	Adds 2 numbers and assigns the result to the first.

	
	-=
	Subtracts 2 numbers and assigns the result to the first.

	
	*=
	Multiplies 2 numbers and assigns the result to the first.

	
	/=
	Divides 2 numbers and assigns the result to the first.

	
	%=
	Computes the modulus of 2 numbers and assigns the result to the first.

	
	&=
	Performs a bitwise AND and assigns the result to the first operand.

	
	^=
	Performs a bitwise XOR and assigns the result to the first operand.

	
	|=
	Performs a bitwise OR and assigns the result to the first operand.

	
	<<=
	Performs a left shift and assigns the result to the first operand.

	
	>>=
	Performs a sign-propagating right shift and assigns the result to the first operand.

	
	>>>=
	Performs a zero-fill right shift and assigns the result to the first operand.

	Comparison Operators
	==
	Returns true if the operands are equal.

	
	!=
	Returns true if the operands are not equal.

	
	>
	Returns true if left operand is greater than right operand.

	
	>=
	Returns true if left operand is greater than or equal to right operand.

	
	<
	Returns true if left operand is less than right operand.

	
	<=
	Returns true if left operand is less than or equal to right operand.

	Special Operators
	?:
	Lets you perform a simple "if...then...else"

	
	,
	Evaluates two expressions and returns the result of the second expression.

	
	delete
	Lets you delete an object property or an element at a specified index in an array.

	
	new
	Lets you create an instance of a user-defined object type or of one of the built-in object types.

	
	this
	Keyword that you can use to refer to the current object.

	
	typeof
	Returns a string indicating the type of the unevaluated operand.

	
	void
	The void operator specifies an expression to be evaluated without returning a value.

Assignment Operators
An assignment operator assigns a value to its left operand based on the value of its right operand.
The basic assignment operator is equal (=), which assigns the value of its right operand to its left operand. That is, x = y assigns the value of y to x. The other assignment operators are shorthand for standard operations, as shown in Table 2.2.
Table 2.2 Assignment operators
	Shorthand operator
	Meaning

	x += y
	x = x + y

	x -= y
	x = x - y

	x *= y
	x = x * y

	x /= y
	x = x / y

	x %= y
	x = x % y

	x <<= y
	x = x << y

	x >>= y
	x = x >> y

	x >>>= y
	x = x >>> y

	x &= y
	x = x & y

	x ^= y
	x = x ^ y

	x |= y
	x = x | y

Comparison Operators
A comparison operator compares its operands and returns a logical value based on whether the comparison is true or not. The operands can be numerical or string values. When used on string values, the comparisons are based on the standard lexicographical ordering.
They are described in Table 2.3. In the examples in this table, assume var1 has been assigned the value 3 and var2 had been assigned the value 4.
Table 2.3 Comparison operators
	Operator
	Description
	Examples returning true

	Equal (==)
	Returns true if the operands are equal.
	3 == var1

	Not equal (!=)
	Returns true if the operands are not equal.
	var1 != 4

	Greater than (>)
	Returns true if left operand is greater than right operand.
	var2 > var1

	Greater than or equal (>=)
	Returns true if left operand is greater than or equal to right operand.
	var2 >= var1
var1 >= 3

	Less than (<)
	Returns true if left operand is less than right operand.
	var1 < var2

	Less than or equal (<=)
	Returns true if left operand is less than or equal to right operand.
	var1 <= var2
var2 <= 5

Arithmetic Operators
Arithmetic operators take numerical values (either literals or variables) as their operands and return a single numerical value. The standard arithmetic operators are addition (+), subtraction (-), multiplication (*), and division (/). These operators work as they do in other programming languages.
% (Modulus)
The modulus operator is used as follows:
var1 % var2
The modulus operator returns the first operand modulo the second operand, that is, var1 modulo var2, in the preceding statement, where var1 and var2 are variables. The modulo function is the integer remainder of dividing var1 by var2. For example, 12 % 5 returns 2.
++ (Increment)
The increment operator is used as follows:
var++ or ++var
This operator increments (adds one to) its operand and returns a value. If used postfix, with operator after operand (for example, x++), then it returns the value before incrementing. If used prefix with operator before operand (for example, ++x), then it returns the value after incrementing.
For example, if x is three, then the statement y = x++ sets y to 3 and increments x to 4. If x is 3, then the statement y = ++x increments x to 4 and sets y to 4.
-- (Decrement)
The decrement operator is used as follows:
var-- or --var
This operator decrements (subtracts one from) its operand and returns a value. If used postfix (for example, x--), then it returns the value before decrementing. If used prefix (for example, --x), then it returns the value after decrementing.
For example, if x is three, then the statement y = x-- sets y to 3 and decrements x to 2. If x is 3, then the statement y = --x decrements x to 2 and sets y to 2.
- (Unary Negation)
The unary negation operator precedes its operand and negates it. For example, y = -x negates the value of x and assigns that to y; that is, if x were 3, y would get the value -3 and x would retain the value 3.
Bitwise Operators
Bitwise operators treat their operands as a set of bits (zeros and ones), rather than as decimal, hexadecimal, or octal numbers. For example, the decimal number nine has a binary representation of 1001. Bitwise operators perform their operations on such binary representations, but they return standard JavaScript numerical values.
Table 2.4 summarizes JavaScript's bitwise operators

Table 2.4 Bitwise operators
	Operator
	Usage
	Description

	Bitwise AND
	a & b
	Returns a one in each bit position if bits of both operands are ones.

	Bitwise OR
	a | b
	Returns a one in a bit if bits of either operand is one.

	Bitwise XOR
	a ^ b
	Returns a one in a bit position if bits of one but not both operands are one.

	Bitwise NOT
	~ a
	Flips the bits of its operand.

	Left shift
	a << b
	Shifts a in binary representation b bits to left, shifting in zeros from the right.

	Sign-propagating right shift
	a >> b
	Shifts a in binary representation b bits to right, discarding bits shifted off.

	Zero-fill right shift
	a >>> b
	Shifts a in binary representation b bits to the right, discarding bits shifted off, and shifting in zeros from the left.

Bitwise Logical Operators
Conceptually, the bitwise logical operators work as follows:
· The operands are converted to thirty-two-bit integers and expressed by a series of bits (zeros and ones).
· Each bit in the first operand is paired with the corresponding bit in the second operand: first bit to first bit, second bit to second bit, and so on.
· The operator is applied to each pair of bits, and the result is constructed bitwise.
For example, the binary representation of nine is 1001, and the binary representation of fifteen is 1111. So, when the bitwise operators are applied to these values, the results are as follows:
· 15 & 9 yields 9 (1111 & 1001 = 1001)
· 15 | 9 yields 15 (1111 | 1001 = 1111)
· 15 ^ 9 yields 6 (1111 ^ 1001 = 0110)
Bitwise Shift Operators
The bitwise shift operators take two operands: the first is a quantity to be shifted, and the second specifies the number of bit positions by which the first operand is to be shifted. The direction of the shift operation is controlled by the operator used.
Shift operators convert their operands to thirty-two-bit integers and return a result of the same type as the left operator.
<< (Left Shift)
This operator shifts the first operand the specified number of bits to the left. Excess bits shifted off to the left are discarded. Zero bits are shifted in from the right.
For example, 9<<2 yields thirty-six, because 1001 shifted two bits to the left becomes 100100, which is thirty-six.
>> (Sign-Propagating Right Shift)
This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the right are discarded. Copies of the leftmost bit are shifted in from the left.
For example, 9>>2 yields two, because 1001 shifted two bits to the right becomes 10, which is two. Likewise, -9>>2 yields -3, because the sign is preserved.
>>> (Zero-Fill Right Shift)
This operator shifts the first operand the specified number of bits to the right. Excess bits shifted off to the right are discarded. Zero bits are shifted in from the left.
For example, 19>>>2 yields four, because 10011 shifted two bits to the right becomes 100, which is four. For non-negative numbers, zero-fill right shift and sign-propagating right shift yield the same result.
Logical Operators
Logical operators take Boolean (logical) values as operands and return a Boolean value.
They are described in Table 2.5.
Table 2.5 Logical operators
	Operator
	Usage
	Description

	and (&&)
	expr1 && expr2
	Returns expr1 if it converts to false. Otherwise, returns expr2.

	or (||)
	expr1 || expr2
	Returns expr1 if it converts to true. Otherwise, returns expr2.

	not (!)
	!expr
	If expr is true, returns false; if expr is false, returns true.

Examples
Consider the following script:
<script language="JavaScript1.2">"
v1 = "Cat";
v2 = "Dog";
v3 = false;
document.writeln("t && t returns " + (v1 && v2));
document.writeln("f && t returns " + (v3 && v1));
document.writeln("t && f returns " + (v1 && v3));
document.writeln("f && f returns " + (v3 && (3 == 4)));
document.writeln("t || t returns " + (v1 || v2));
document.writeln("f || t returns " + (v3 || v1));
document.writeln("t || f returns " + (v1 || v3));
document.writeln("f || f returns " + (v3 || (3 == 4)));
document.writeln("!t returns " + (!v1));
document.writeln("!f returns " + (!v3));
</script>
This script displays the following:
t && t returns Dog
f && t returns false
t && f returns false
f && f returns false
t || t returns Cat
f || t returns Cat
t || f returns Cat
f || f returns false
!t returns false
!f returns true
Short-Circuit Evaluation
As logical expressions are evaluated left to right, they are tested for possible "short-circuit" evaluation using the following rules:
· false && anything is short-circuit evaluated to false.
· true || anything is short-circuit evaluated to true.
The rules of logic guarantee that these evaluations are always correct. Note that the anything part of the above expressions is not evaluated, so any side effects of doing so do not take effect.
String Operators
In addition to the comparison operators, which can be used on string values, the concatenation operator (+) concatenates two string values together, returning another string that is the union of the two operand strings. For example, "my " + "string" returns the string "my string".
The shorthand assignment operator += can also be used to concatenate strings. For example, if the variable mystring has the value "alpha," then the expression mystring += "bet" evaluates to "alphabet" and assigns this value to mystring.
Special Operators
?: (Conditional operator)
The conditional operator is the only JavaScript operator that takes three operands. This operator is frequently used as a shortcut for the if statement.
Syntax
condition ? expr1 : expr2
Parameters
	condition
	an expression that evaluates to true or false

	expr1, expr2
	expressions with values of any type.

Description
If condition is true, the operator returns the value of expr1; otherwise, it returns the value of expr2. For example, to display a different message based on the value of the isMember variable, you could use this statement:
document.write ("The fee is " + (isMember ? "$2.00" : "$10.00"))
, (Comma operator)
The comma operator is very simple. It evaluates both of its operands and returns the value of the second operand.
Syntax
expr1, expr2
Parameters
	expr1, expr2
	Any expressions

Description
You can use the comma operator when you want to include multiple expressions in a location that requires a single expression. The most common usage of this operator is to supply multiple parameters in a for loop.
For example, if a is a 2-dimensional array with 10 elements on a side, the following code uses the comma operator to increment two variables at once. The code prints the values of the diagonal elements in the array:
for (var i=0, j=10; i <= 10; i++, j--)
 document.writeln("a["+i+","+j+"]= " + a[i,j])
delete
Deletes an object's property or an element at a specified index in an array.
Syntax
delete objectName.property
delete objectName[index]
delete property
Parameters
	objectName
	The name of an object.

	property
	An existing property.

	Index
	An integer representing the location of an element in an array

Description
The third form is legal only within a with statement.
If the deletion succeeds, the delete operator sets the property or element to undefined. delete always returns undefined.
new
An operator that lets you create an instance of a user-defined object type or of one of the built-in object types that has a constructor function.
Syntax
objectName = new objectType (param1 [,param2] ...[,paramN])
Arguments
	objectName
	Name of the new object instance.

	objectType
	Object type. It must be a function that defines an object type.

	param1...paramN
	Property values for the object. These properties are parameters defined for the objectType function.

Description
Creating a user-defined object type requires two steps:
1. Define the object type by writing a function.
2. Create an instance of the object with new.
To define an object type, create a function for the object type that specifies its name, properties, and methods. An object can have a property that is itself another object. See the examples below.
You can always add a property to a previously defined object. For example, the statement car1.color = "black" adds a property color to car1, and assigns it a value of "black". However, this does not affect any other objects. To add the new property to all objects of the same type, you must add the property to the definition of the car object type.
You can add a property to a previously defined object type by using the Function.prototype property. This defines a property that is shared by all objects created with that function, rather than by just one instance of the object type. The following code adds a color property to all objects of type car, and then assigns a value to the color property of the object car1. For more information, see prototype
Car.prototype.color=null
car1.color="black"
birthday.description="The day you were born"
Examples
Example 1: object type and object instance. Suppose you want to create an object type for cars. You want this type of object to be called car, and you want it to have properties for make, model, and year. To do this, you would write the following function:
function car(make, model, year) {
 this.make = make
 this.model = model
 this.year = year
}
Now you can create an object called mycar as follows:
mycar = new car("Eagle", "Talon TSi", 1993)
This statement creates mycar and assigns it the specified values for its properties. Then the value of mycar.make is the string "Eagle", mycar.year is the integer 1993, and so on.
You can create any number of car objects by calls to new. For example,
kenscar = new car("Nissan", "300ZX", 1992)
Example 2: object property that is itself another object. Suppose you define an object called person as follows:
function person(name, age, sex) {
 this.name = name
 this.age = age
 this.sex = sex
}
And then instantiate two new person objects as follows:
rand = new person("Rand McNally", 33, "M")
ken = new person("Ken Jones", 39, "M")
Then you can rewrite the definition of car to include an owner property that takes a person object, as follows:
function car(make, model, year, owner) {
 this.make = make;
 this.model = model;
 this.year = year;
 this.owner = owner;
}
To instantiate the new objects, you then use the following:
car1 = new car("Eagle", "Talon TSi", 1993, rand);
car2 = new car("Nissan", "300ZX", 1992, ken)
Instead of passing a literal string or integer value when creating the new objects, the above statements pass the objects rand and ken as the parameters for the owners. To find out the name of the owner of car2, you can access the following property:
car2.owner.name
this
A keyword that you can use to refer to the current object. In general, in a method this refers to the calling object.

Syntax
this[.propertyName]
Examples
Suppose a function called validate validates an object's value property, given the object and the high and low values:
function validate(obj, lowval, hival) {
 if ((obj.value < lowval) || (obj.value > hival))
 alert("Invalid Value!")
}
You could call validate in each form element's onChange event handler, using this to pass it the form element, as in the following example:
Enter a number between 18 and 99:
<INPUT TYPE = "text" NAME = "age" SIZE = 3
 onChange="validate(this, 18, 99)">
typeof
The typeof operator is used in either of the following ways:
1. typeof operand
2. typeof (operand)
The typeof operator returns a string indicating the type of the unevaluated operand. operand is the string, variable, keyword, or object for which the type is to be returned. The parentheses are optional.
Suppose you define the following variables:
var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()
The typeof operator returns the following results for these variables:
typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined
For the keywords true and null, the typeof operator returns the following results:
typeof true is boolean
typeof null is object
For a number or string, the typeof operator returns the following results:
typeof 62 is number
typeof 'Hello world' is string
For property values, the typeof operator returns the type of value the property contains:
typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number
For methods and functions, the typeof operator returns results as follows:
typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function
For predefined objects, the typeof operator returns results as follows:
typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function
void
The void operator is used in either of the following ways:
1. javascript:void (expression)
2. javascript:void expression
The void operator specifies an expression to be evaluated without returning a value. expression is a JavaScript expression to evaluate. The parentheses surrounding the expression are optional, but it is good style to use them.
You can use the void operator to specify an expression as a hypertext link. The expression is evaluated but is not loaded in place of the current document.
The following code creates a hypertext link that does nothing when the user clicks it. When the user clicks the link, void(0) evaluates to 0, but that has no effect in JavaScript.
Click here to do nothing
The following code creates a hypertext link that submits a form when the user clicks it.

Click here to submit

Chapter 3
Statements
This chapter describes all JavaScript statements. JavaScript statements consist of keywords used with the appropriate syntax. A single statement may span multiple lines. Multiple statements may occur on a single line if each statement is separated by a semicolon.
Syntax conventions: All keywords in syntax statements are in bold. Words in italics represent user-defined names or statements. Any portions enclosed in square brackets, [], are optional. {statements} indicates a block of statements, which can consist of a single statement or multiple statements delimited by a curly braces { }.
Table 3.1 lists statements available in JavaScript.
Table 3.1 JavaScript statements.
	break
	Statement that terminates the current while or for loop and transfers program control to the statement following the terminated loop.

	comment
	Notations by the author to explain what a script does. Comments are ignored by the interpreter.

	continue
	Statement that terminates execution of the block of statements in a while or for loop, and continues execution of the loop with the next iteration.

	delete
	Deletes an object's property or an element of an array.

	do...while
	Executes its statements until the test condition evaluates to false. Statement is executed at least once.

	export
	Allows a signed script to provide properties, functions, and objects to other signed or unsigned scripts.

	for
	Statement that creates a loop that consists of three optional expressions, enclosed in parentheses and separated by semicolons, followed by a block of statements executed in the loop.

	for...in
	Statement that iterates a specified variable over all the properties of an object. For each distinct property, JavaScript executes the specified statements.

	function
	Statement that declares a JavaScript function name with the specified parameters. Acceptable parameters include strings, numbers, and objects.

	if...else
	Statement that executes a set of statements if a specified condition is true. If the condition is false, another set of statements can be executed.

	import
	Allows a script to import properties, functions, and objects from a signed script which has exported the information.

	labeled
	Provides an identifier that can be used with break or continue to indicate where the program should continue execution.

	return
	Statement that specifies the value to be returned by a function.

	switch
	Allows a program to evaluate an expression and attempt to match the expression's value to a case label.

	var
	Statement that declares a variable, optionally initializing it to a value.

	while
	Statement that creates a loop that evaluates an expression, and if it is true, executes a block of statements.

	with
	Statement that establishes the default object for a set of statements.

break
Terminates the current while or for loop and transfers program control to the statement following the terminated loop.
Syntax
break
break label
Argument
	label
	Identifier associated with the label of the statement.

Description
The break statement can now include an optional label that allows the program to break out of a labeled statement. This type of break must be in a statement identified by the label used by break.
The statements in a labeled statement can be of any type.
Examples
The following function has a break statement that terminates the while loop when e is 3, and then returns the value 3 * x.
function testBreak(x) {
 var i = 0
 while (i < 6) {
 if (i == 3)
 break
 i++
 }
 return i*x
}
In the following example, a statement labeled checkiandj contains a statement labeled checkj. If break is encountered, the program breaks out of the checkj statement and continues with the remainder of the checkiandj statement. If break had a label of checkiandj, the program would break out of the checkiandj statement and continue at the statement following checkiandj.
checkiandj :
 if (4==i) {
 document.write("You've entered " + i + ".
");
 checkj :
 if (2==j) {
 document.write("You've entered " + j + ".
");
 break checkj;
 document.write("The sum is " + (i+j) + ".
");
 }
 document.write(i + "-" + j + "=" + (i-j) + ".
");
 }
comment
Notations by the author to explain what a script does. Comments are ignored by the interpreter.
Syntax
// comment text
/* multiple line comment text */
Description
JavaScript supports Java-style comments:
· Comments on a single line are preceded by a double-slash (//).
· Comments that span multiple lines are preceded by a /* and followed by a */.
Examples
// This is a single-line comment.
/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */

delete
Deletes an object's property or an element at a specified index in an array.
Syntax
delete objectName.property
delete objectName[index]
delete property
Arguments
	objectName
	An object from which to delete the specified property or value.

	property
	The property to delete.

	index
	An integer index into an array.

Description
If the delete operator succeeds, it sets the property of element to undefined; the operator always returns undefined.
You can only use the delete operator to delete object properties and array entries. You cannot use this operator to delete objects or variables. Consequently, you can only use the third form within a with statement, to delete a property from the object.
do...while
Executes its statements until the test condition evaluates to false. Statement is executed at least once.
Syntax
do
 statement
while (condition);

Arguments
	statement
	Block of statements that is executed at least once and is re-executed each time the condition evaluates to true.

	condition
	Evaluated after each pass through the loop. If condition evaluates to true, the statements in the preceding block are re-executed. When condition evaluates to false, control passes to the statement following do while.

Example
In the following example, the do loop iterates at least once and reiterates until i is no longer less than 5.
do {
 i+=1
 document.write(i);
while (i<5);
export
Allows a signed script to provide properties, functions, and objects to other signed or unsigned scripts.
Syntax
export name1, name2, ..., nameN
export *
Parameters
	nameN
	List of properties, functions, and objects to be exported.

	*
	Exports all properties, functions, and objects from the script.

Description
Typically, information in a signed script is available only to scripts signed by the same principals. By exporting properties, functions, or objects, a signed script makes this information available to any script (signed or unsigned). The receiving script uses the companion import statement to access the information.
for
Creates a loop that consists of three optional expressions, enclosed in parentheses and separated by semicolons, followed by a block of statements executed in the loop.
Syntax
for ([initial-expression;] [condition;] [increment-expression]) {
 statements
}
Arguments
	initial-expression
	Statement or variable declaration. Typically used to initialize a counter variable. This expression may optionally declare new variables with the var keyword.

	condition
	Evaluated on each pass through the loop. If this condition evaluates to true, the statements in statements are performed. This conditional test is optional. If omitted, the condition always evaluates to true.

	increment-expression
	Generally used to update or increment the counter variable.

	statements
	Block of statements that are executed as long as condition evaluates to true. This can be a single statement or multiple statements. Although not required, it is good practice to indent these statements from the beginning of the for statement.

Examples
The following for statement starts by declaring the variable i and initializing it to 0. It checks that i is less than nine, performs the two succeeding statements, and increments i by 1 after each pass through the loop.
for (var i = 0; i < 9; i++) {
 n += i
 myfunc(n)
}
for...in
Iterates a specified variable over all the properties of an object. For each distinct property, JavaScript executes the specified statements.
Syntax
for (variable in object) {
 statements}
Arguments
	variable
	Variable to iterate over every property.

	object
	Object for which the properties are iterated.

	statements
	Specifies the statements to execute for each property.

Examples
The following function takes as its argument an object and the object's name. It then iterates over all the object's properties and returns a string that lists the property names and their values.
function dump_props(obj, objName) {
 var result = ""
 for (var i in obj) {
 result += objName + "." + i + " = " + obj[i] + "
"
 }
 result += "<HR>"
 return result
}
function
Declares a JavaScript function with the specified parameters. Acceptable parameters include strings, numbers, and objects.
Syntax
function name([param] [, param] [..., param]) {
 statements}
Arguments
	name
	The function name.

	param
	The name of an argument to be passed to the function. A function can have up to 255 arguments.

Description
To return a value, the function must have a return statement that specifies the value to return. You cannot nest a function statement in another statement or in itself.
All parameters are passed to functions, by value. In other words, the value is passed to the function, but if the function changes the value of the parameter, this change is not reflected globally or in the calling function.
In addition to defining functions as described here, you can also define Function objects.
Examples
//This function returns the total dollar amount of sales, when
//given the number of units sold of products a, b, and c.
function calc_sales(units_a, units_b, units_c) {
 return units_a*79 + units_b*129 + units_c*699
}
if...else
Executes a set of statements if a specified condition is true. If the condition is false, another set of statements can be executed.
Syntax
if (condition) {
 statements1}
[else {
 statements2}]
Arguments
	condition
	Can be any JavaScript expression that evaluates to true or false. Parentheses are required around the condition. If condition evaluates to true, the statements in statements1 are executed.

	statements1 statements2
	Can be any JavaScript statements, including further nested if statements. Multiple statements must be enclosed in braces.

Examples
if (cipher_char == from_char) {
 result = result + to_char
 x++}
else
 result = result + clear_char
import
Allows a script to import properties, functions, and objects from a signed script which has exported the information.
Syntax
import objectName.name1, objectName.name2, ..., objectName.nameN
import objectName.*

Parameters
	nameN
	List of properties, functions, and objects to import from the export file.

	objectName
	Name of the object that will receive the imported names.

	*
	imports all properties, functions, and objects from the export script.

Description
The objectName parameter is the name of the object that will receive the imported names. For example, if f and p have been exported, and if obj is an object from the importing script, then
import obj.f, obj.p
makes f and p accessible in the importing script as properties of obj.
Typically, information in a signed script is available only to scripts signed by the same principals. By exporting (using the export statement) properties, functions, or objects, a signed script makes this information available to any script (signed or unsigned). The receiving script uses the import statement to access the information.
The script must load the export script into a window, frame, or layer before it can import and use any exported properties, functions, and objects.
labeled
Provides an identifier that can be used with break or continue to indicate where the program should continue execution.
In a labeled statement, break or continue must be followed with a label, and the label must be the identifier of the labeled statement containing break or continue.
Syntax
label :
 statement
Arguments
	statement
	Block of statements. break can be used with any labeled statement, and continue can be used with looping labeled statements.

Example
For an example of a labeled statement using break, see break. For an example of a labeled statement using continue, see continue.

return
Specifies the value to be returned by a function.
Syntax
return expression

Examples
The following function returns the square of its argument, x, where x is a number.
function square(x) {
 return x * x
}
switch
Allows a program to evaluate an expression and attempt to match the expression's value to a case label.
Syntax
switch (expression){
 case label :
 statement;
 break;
 case label :
 statement;
 break;
 ...
 default : statement;
}
Arguments
	expression
	Value matched against label.

	label
	Identifier used to match against expression.

	statement
	Any statement.

Description
If a match is found, the program executes the associated statement.
The program first looks for a label matching the value of expression and then executes the associated statement. If no matching label is found, the program looks for the optional default statement, and if found, executes the associated statement. If no default statement is found, the program continues execution at the statement following the end of switch.
The optional break statement associated with each case label ensures that the program breaks out of switch once the matched statement is executed and continues execution at the statement following switch. If break is omitted, the program continues execution at the next statement in the switch statement.
Example
In the following example, if expression evaluates to "Bananas," the program matches the value with case "Bananas" and executes the associated statement. When break is encountered, the program breaks out of switch and executes the statement following switch. If break were omitted, the statement for case "Cherries" would also be executed.
switch (i) {
 case "Oranges" :
 document.write("Oranges are $0.59 a pound.
");
 break;
 case "Apples" :
 document.write("Apples are $0.32 a pound.
");
 break;
 case "Bananas" :
 document.write("Bananas are $0.48 a pound.
");
 break;
 case "Cherries" :
 document.write("Cherries are $3.00 a pound.
");
 break;
 default :
 document.write("Sorry, we are out of " + i + ".
");
}
document.write("Is there anything else you'd like?
");
var
Declares a variable, optionally initializing it to a value.
Syntax
var varname [= value] [..., varname [= value]]
Arguments
	varname
	Variable name. It can be any legal identifier.

	value
	Initial value of the variable and can be any legal expression.

Description
The scope of a variable is the current function or, for variables declared outside a function, the current application.
Using var outside a function is optional; you can declare a variable by simply assigning it a value. However, it is good style to use var, and it is necessary in functions if a global variable of the same name exists.
Examples
var num_hits = 0, cust_no = 0
while
Creates a loop that evaluates an expression, and if it is true, executes a block of statements. The loop then repeats, as long as the specified condition is true.
Syntax
while (condition) {
 statements
}
Arguments
	condition
	Evaluated before each pass through the loop. If this condition evaluates to true, the statements in the succeeding block are performed. When condition evaluates to false, execution continues with the statement following statements.

	statements
	Block of statements that are executed as long as the condition evaluates to true. Although not required, it is good practice to indent these statements from the beginning of the statement.

Examples
The following while loop iterates as long as n is less than three.
n = 0
x = 0
while(n < 3) {
 n ++
 x += n
}
Each iteration, the loop increments n and adds it to x. Therefore, x and n take on the following values:
· After the first pass: n = 1 and x = 1
· After the second pass: n = 2 and x = 3
· After the third pass: n = 3 and x = 6
After completing the third pass, the condition n < 3 is no longer true, so the loop terminates.
with
Establishes the default object for a set of statements. Within the set of statements, any property references that do not specify an object are assumed to be for the default object.
Syntax
with (object){
 statements
}
Arguments
	object
	Specifies the default object to use for the statements. The parentheses around object are required.

	statements
	Any block of statements.

Examples
The following with statement specifies that the Math object is the default object. The statements following the with statement refer to the PI property and the cos and sin methods, without specifying an object. JavaScript assumes the Math object for these references.
var a, x, y
var r=10
with (Math) {
 a = PI * r * r
 x = r * cos(PI)
 y = r * sin(PI/2)
}

Chapter 4
Core
This chapter includes the JavaScript core objects Array, Boolean, Date, Function, Math, Number, Object, and String. These objects are used in both client-side and server-side JavaScript.
Table 4.1 summarizes the objects in this chapter.
Table 4.1 Core objects
	Object
	Description

	Array
	Represents an array.

	Boolean
	Represents a Boolean value.

	Date
	Represents a date.

	Function
	Specifies a string of JavaScript code to be compiled as a function.

	Math
	Provides basic math constants and functions; for example, its PI property contains the value of pi.

	Number
	Represents primitive numeric values.

	Object
	Contains the base functionality shared by all JavaScript objects.

	RegExp
	Represents a regular expression; also contains static properties that are shared among all regular expression objects.

	String
	Represents a JavaScript string.

Array
Represents an array of elements.
	Core object

Created by
The Array object constructor:
new Array(arrayLength);
new Array(element0, element1, ..., elementN);
Parameters
	arrayLength
	(Optional) The initial length of the array. You can access this value using the length property.

	elementN
	(Optional) A list of values for the array's elements. When this form is specified, the array is initialized with the specified values as its elements, and the array's length property is set to the number of arguments.

Description
In Navigator 3.0, you can specify an initial length when you create the array. The following code creates an array of five elements:
billingMethod = new Array(5)
When you create an array, all of its elements are initially null. The following code creates an array of 25 elements, then assigns values to the first three elements:
musicTypes = new Array(25)
musicTypes[0] = "R&B"
musicTypes[1] = "Blues"
musicTypes[2] = "Jazz"
However, in Navigator 4.0, if you specify LANGUAGE="JavaScript1.2" in the <SCRIPT> tag, using new Array(1) creates a new array with a[0]=1.
An array's length increases if you assign a value to an element higher than the current length of the array. The following code creates an array of length 0, then assigns a value to element 99. This changes the length of the array to 100.
colors = new Array()
colors[99] = "midnightblue"
You can construct a dense array of two or more elements starting with index 0 if you define initial values for all elements. A dense array is one in which each element has a value. The following code creates a dense array with three elements:
myArray = new Array("Hello", myVar, 3.14159)
In Navigator 2.0, you must index an array by its ordinal number, for example document.forms[0]. In Navigator 3.0 and later, you can index an array by either its ordinal number or by its name (if defined). For example, assume you define the following array:
myArray = new Array("Wind","Rain","Fire")
You can then refer to the first element of the array as myArray[0] or myArray["Wind"].
In Navigator 4.0, the result of a match between a regular expression and a string can create an array. This array has properties and elements that provide information about the match. An array is the return value of RegExp.exec, String.match, and String.replace. To help explain these properties and elements, look at the following example and then refer to the table below:
<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case
myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");
</SCRIPT>
The properties and elements returned from this match are as follows:
	Property/Element
	Description
	Example

	input
	A read-only property that reflects the original string against which the regular expression was matched.
	cdbBdbsbz

	index
	A read-only property that is the zero-based index of the match in the string.
	1

	[0]
	A read-only element that specifies the last matched characters.
	dbBd

	[1], ...[n]
	Read-only elements that specify the parenthesized substring matches, if included in the regular expression. The number of possible parenthesized substrings is unlimited.
	[1]=bB
[2]=d

Property Summary
	index
	For an array created by a regular expression match, the zero-based index of the match in the string.

	input
	For an array created by a regular expression match, reflects the original string against which the regular expression was matched.

	length
	Reflects the number of elements in an array

	prototype
	Allows the addition of properties to an Array object.

Method Summary
	concat
	Joins two arrays and returns a new array.

	join
	Joins all elements of an array into a string.

	pop
	Removes the last element from an array and returns that element.

	push
	Adds one or more elements to the end of an array and returns that last element added.

	reverse
	Transposes the elements of an array: the first array element becomes the last and the last becomes the first.

	shift
	Removes the first element from an array and returns that element

	slice
	Extracts a section of an array and returns a new array.

	splice
	Adds and/or removes elements from an array.

	sort
	Sorts the elements of an array.

	toString
	Returns a string representing the specified object.

	unshift
	Adds one or more elements to the front of an array and returns the new length of the array.

Examples
Example 1. The following example creates an array, msgArray, with a length of 0, then assigns values to msgArray[0] and msgArray[99], changing the length of the array to 100.
msgArray = new Array()
msgArray [0] = "Hello"
msgArray [99] = "world"
// The following statement is true,
// because defined msgArray [99] element.
if (msgArray .length == 100)
 document.write("The length is 100.")
See also examples for onError.
Example 2: Two-dimensional array. The following code creates a two-dimensional array and displays the results.
a = new Array(4)
for (i=0; i < 4; i++) {
 a[i] = new Array(4)
 for (j=0; j < 4; j++) {
 a[i][j] = "["+i+","+j+"]"
 }
}
for (i=0; i < 4; i++) {
 str = "Row "+i+":"
 for (j=0; j < 4; j++) {
 str += a[i][j]
 }
 document.write(str,"<p>")
}
This example displays the following results:
Multidimensional array test
Row 0:[0,0][0,1][0,2][0,3]
Row 1:[1,0][1,1][1,2][1,3]
Row 2:[2,0][2,1][2,2][2,3]
Row 3:[3,0][3,1][3,2][3,3]
Properties
index
For an array created by a regular expression match, the zero-based index of the match in the string.
input
For an array created by a regular expression match, reflects the original string against which the regular expression was matched.

length
An integer that specifies the number of elements in an array. You can set the length property to truncate an array at any time. You cannot extend an array; for example, if you set length to 3 when it is currently 2, the array will still contain only 2 elements.
	Property of
	Array

Examples
In the following example, the getChoice function uses the length property to iterate over every element in the musicType array. musicType is a select element on the musicForm form.
function getChoice() {
 for (var i = 0; i < document.musicForm.musicType.length; i++) {
 if (document.musicForm.musicType.options[i].selected == true) {
 return document.musicForm.musicType.options[i].text
 }
 }
}
The following example shortens the array statesUS to a length of 50 if the current length is greater than 50.
if (statesUS.length > 50) {
 statesUS.length=50
 alert("The U.S. has only 50 states. New length is " + statesUS.length)
}
prototype
Represents the prototype for this class. You can use the prototype to add properties or methods to all instances of a class. For information on prototypes, see Function.prototype.
	Property of Array

Methods
concat
Joins two arrays and returns a new array.
	Method of
	Array

Syntax
concat(arrayName2)
Parameters
	arrayName2
	Name of the array to concatenate to this array.

Description
concat does not alter the original arrays, but returns a "one level deep" copy that contains copies of the same elements combined from the original arrays. Elements of the original arrays are copied into the new array as follows:
· Object references (and not the actual object) -- concat copies object references into the new array. Both the original and new array refer to the same object. If a referenced object changes, the changes are visible to both the new and original arrays.
· Strings and numbers (not String and Number objects)-- concat copies strings and numbers into the new array. Changes to the string or number in one array does not affect the other arrays.
If a new element is added to either array, the other array is not affected.
join
Joins all elements of an array into a string.
	Method of
	Array

Syntax
join(separator)
Parameters
	separator
	Specifies a string to separate each element of the array. The separator is converted to a string if necessary. If omitted, the array elements are separated with a comma.

Description
The string conversion of all array elements are joined into one string.
Examples
The following example creates an array, a with three elements, then joins the array three times: using the default separator, then a comma and a space, and then a plus.
a = new Array("Wind","Rain","Fire")
document.write(a.join() +"
")
document.write(a.join(", ") +"
")
document.write(a.join(" + ") +"
")
This code produces the following output:
Wind,Rain,Fire
Wind, Rain, Fire
Wind + Rain + Fire
See also
Array.reverse
pop
Removes the last element from an array and returns that element. This method changes the length of the array.
	Method of
	Array

Syntax
pop()
Parameters
None.

Example
The following code displays the myFish array before and after removing its last element. It also displays the removed element:
myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish before: " + myFish);
popped = myFish.pop();
document.writeln("myFish after: " + myFish);
document.writeln("popped this element: " + popped);
This example displays the following:
myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["angel", "clown", "mandarin"]
popped this element: surgeon
push
Adds one or more elements to the end of an array and returns that last element added. This method changes the length of the array.
	Method of
	Array

Syntax
push(elt1, ..., eltN)
Parameters
	elt1, ..., eltN
	The elements to add to the end of the array.

Description
The behavior of the push method is analogous to the push function in Perl 4. Note that this behavior is different in Perl 5.
Example
The following code displays the myFish array before and after adding elements to its end. It also displays the last element added:
myFish = ["angel", "clown"];
document.writeln("myFish before: " + myFish);
pushed = myFish.push("drum", "lion");
document.writeln("myFish after: " + myFish);
document.writeln("pushed this element last: " + pushed);
This example displays the following:
myFish before: ["angel", "clown"]
myFish after: ["angel", "clown", "drum", "lion"]
pushed this element last: lion
reverse
Transposes the elements of an array: the first array element becomes the last and the last becomes the first.
	Method of
	Array

Syntax
reverse()
Parameters
None
Description
The reverse method transposes the elements of the calling array object.
Examples
The following example creates an array myArray, containing three elements, then reverses the array.
myArray = new Array("one", "two", "three")
myArray.reverse()
This code changes myArray so that:
· myArray[0] is "three"
· myArray[1] is "two"
· myArray[2] is "one"
shift
Removes the first element from an array and returns that element. This method changes the length of the array.
	Method of
	Array

Syntax
shift()
Parameters
None.
Example
The following code displays the myFish array before and after removing its first element. It also displays the removed element:
myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish before: " + myFish);
shifted = myFish.shift();
document.writeln("myFish after: " + myFish);
document.writeln("Removed this element: " + shifted);
This example displays the following:
myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["clown", "mandarin", "surgeon"]
Removed this element: angel
slice
Extracts a section of an array and returns a new array.
	Method of
	Array

Syntax
slice(begin,end)

Parameters
	begin
	Zero-based index at which to begin extraction.

	end
	(Optional) Zero-based index at which to end extraction:
· slice extracts up to but not including end. slice(1,4) extracts the second element through the fourth element (elements indexed 1, 2, and 3)
· As a negative index, end indicates an offset from the end of the sequence. slice(2,-1) extracts the third element through the second to last element in the sequence.
· If end is omitted, slice extracts to the end of the sequence.

Description
slice does not alter the original array, but returns a new "one level deep" copy that contains copies of the elements sliced from the original array. Elements of the original array are copied into the new array as follows:
Object references (and not the actual object) -- slice copies object references into the new array. Both the original and new array refer to the same object. If a referenced object changes, the changes are visible to both the new and original arrays.
Strings and numbers (not String and Number objects)-- slice copies strings and numbers into the new array. Changes to the string or number in one array does not affect the other array.
If a new element is added to either array, the other array is not affected.
Example
In the following example, slice creates a new array, newCar, from myCar. Both include a reference to the object myHonda. When the color of myHonda is changed to purple, both arrays reflect the change.
<SCRIPT LANGUAGE="JavaScript1.2">
//Using slice, create newCar from myCar.
myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}
myCar = [myHonda, 2, "cherry condition", "purchased 1997"]
newCar = myCar.slice(0,2)
//Write the values of myCar, newCar, and the color of myHonda
// referenced from both arrays.
document.write("myCar = " + myCar + "
")
document.write("newCar = " + newCar + "
")
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "

")
//Change the color of myHonda.
myHonda.color = "purple"
document.write("The new color of my Honda is " + myHonda.color + "

")
//Write the color of myHonda referenced from both arrays.
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "
")
</SCRIPT>
This script writes:
myCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2,
 "cherry condition", "purchased 1997"]
newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]
myCar[0].color = red newCar[0].color = red
The new color of my Honda is purple
myCar[0].color = purple
newCar[0].color = purple
splice
Changes the content of an array, adding new elements while removing old elements.
	Method of
	Array

Syntax
splice(index, howMany, newElt1, ..., newEltN)
Parameters
	index
	Index at which to start changing the array.

	howMany
	An integer indicating the number of old array elements to remove. If howMany is 0, no elements are removed. In this case, you should specify at least one new element.

	newElt1, ..., newEltN
	(Optional) The elements to add to the array. If you don't specify any elements, splice simply removes elements from the array.

Description
If you specify a different number of elements to insert than the number you're removing, the array will have a different length at the end of the call.
If howMany is 1, this method returns the single element that it removes. If howMany is more than 1, the method returns an array containing the removed elements.
Examples
The following script illustrate the use of splice:
<SCRIPT LANGUAGE="JavaScript1.2">
myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish: " + myFish + "
");
removed = myFish.splice(2, 0, "drum");
document.writeln("After adding 1: " + myFish);
document.writeln("removed is: " + removed + "
");
removed = myFish.splice(3, 1)
document.writeln("After removing 1: " + myFish);
document.writeln("removed is: " + removed + "
");
removed = myFish.splice(2, 1, "trumpet")
document.writeln("After replacing 1: " + myFish);
document.writeln("removed is: " + removed + "
");
removed = myFish.splice(0, 2, "parrot", "anemone", "blue")
document.writeln("After replacing 2: " + myFish);
document.writeln("removed is: " + removed);
</SCRIPT>
This script displays:
myFish: ["angel", "clown", "mandarin", "surgeon"]
After adding 1: ["angel", "clown", "drum", "mandarin", "surgeon"]
removed is: undefined
After removing 1: ["angel", "clown", "drum", "surgeon"]
removed is: mandarin
After replacing 1: ["angel", "clown", "trumpet", "surgeon"]
removed is: drum
After replacing 2: ["parrot", "anemone", "blue", "trumpet", "surgeon"]
removed is: ["angel", "clown"]
sort
Sorts the elements of an array.
	Method of
	Array

Syntax
sort(compareFunction)
Parameters
	compareFunction
	Specifies a function that defines the sort order. If omitted, the array is sorted lexicographically (in dictionary order) according to the string conversion of each element.

Description
If compareFunction is not supplied, elements are sorted by converting them to strings and comparing strings in lexicographic ("dictionary" or "telephone book," not numerical) order. For example, "80" comes before "9" in lexicographic order, but in a numeric sort 9 comes before 80.
If compareFunction is supplied, the array elements are sorted according to the return value of the compare function. If a and b are two elements being compared, then:
· If compareFunction(a, b) is less than 0, sort b to a lower index than a.
· If compareFunction(a, b) returns 0, leave a and b unchanged with respect to each other, but sorted with respect to all different elements.
· If compareFunction(a, b) is greater than 0, sort b to a higher index than a.
So, the compare function has the following form:
function compare(a, b) {
 if (a is less than b by some ordering criterion)
 return -1
 if (a is greater than b by the ordering criterion)
 return 1
 // a must be equal to b
 return 0
}
To compare numbers instead of strings, the compare function can simply subtract b from a:
function compareNumbers(a, b) {
 return a - b
}
JavaScript uses a stable sort: the index partial order of a and b does not change if a and b are equal. If a's index was less than b's before sorting, it will be after sorting, no matter how a and b move due to sorting.
The behavior of the sort method changed between Navigator 3.0 and Navigator 4.0.
In Navigator 3.0, on some platforms, the sort method does not work. This method works on all platforms for Navigator 4.0.
In Navigator 4.0, this method no longer converts undefined elements to null; instead it sorts them to the high end of the array. For example, assume you have this script:
<SCRIPT>
a = new Array();
a[0] = "Ant";
a[5] = "Zebra";
function writeArray(x) {
 for (i = 0; i < x.length; i++) {
 document.write(x[i]);
 if (i < x.length-1) document.write(", ");
 }
}
writeArray(a);
a.sort();
document.write("

");
writeArray(a);
</SCRIPT>
In Navigator 3.0, JavaScript prints:
ant, null, null, null, null, zebra
ant, null, null, null, null, zebra

In Navigator 4.0, JavaScript prints:
ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined
Examples
The following example creates four arrays and displays the original array, then the sorted arrays. The numeric arrays are sorted without, then with, a compare function.
<SCRIPT>
stringArray = new Array("Blue","Humpback","Beluga")
numericStringArray = new Array("80","9","700")
numberArray = new Array(40,1,5,200)
mixedNumericArray = new Array("80","9","700",40,1,5,200)
function compareNumbers(a, b) {
 return a - b
}
document.write("stringArray: " + stringArray.join() +"
")
document.write("Sorted: " + stringArray.sort() +"<P>")
document.write("numberArray: " + numberArray.join() +"
")
document.write("Sorted without a compare function: " + numberArray.sort() +"
")
document.write("Sorted with compareNumbers: " + numberArray.sort(compareNumbers) +"<P>")
document.write("numericStringArray: " + numericStringArray.join() +"
")
document.write("Sorted without a compare function: " + numericStringArray.sort() +"
")
document.write("Sorted with compareNumbers: " + numericStringArray.sort(compareNumbers) +"<P>")
document.write("mixedNumericArray: " + mixedNumericArray.join() +"
")
document.write("Sorted without a compare function: " + mixedNumericArray.sort() +"
")
document.write("Sorted with compareNumbers: " + mixedNumericArray.sort(compareNumbers) +"
")
</SCRIPT>
This example produces the following output. As the output shows, when a compare function is used, numbers sort correctly whether they are numbers or numeric strings.
stringArray: Blue,Humpback,Beluga
Sorted: Beluga,Blue,Humpback
numberArray: 40,1,5,200
Sorted without a compare function: 1,200,40,5
Sorted with compareNumbers: 1,5,40,200
numericStringArray: 80,9,700
Sorted without a compare function: 700,80,9
Sorted with compareNumbers: 9,80,700
mixedNumericArray: 80,9,700,40,1,5,200
Sorted without a compare function: 1,200,40,5,700,80,9
Sorted with compareNumbers: 1,5,9,40,80,200,700
toString
Returns a string representing the specified object.
	Method of
	Array

Syntax
toString()
Parameters
None.
Description
Every object has a toString method that is automatically called when it is to be represented as a text value or when an object is referred to in a string concatenation.
You can use toString within your own code to convert an object into a string, and you can create your own function to be called in place of the default toString method.
For Array objects, the built-in toString method joins the array and returns one string containing each array element separated by commas. For example, the following code creates an array and uses toString to convert the array to a string while writing output.
var monthNames = new Array("Jan","Feb","Mar","Apr")
document.write("monthNames.toString() is " + monthNames.toString())
The output is as follows:
monthNames.toString() is Jan,Feb,Mar,Apr
For information on defining your own toString method, see the Object.toString method.
unshift
Adds one or more elements to the beginning of an array and returns the new length of the array.
	Method of
	Array

Syntax
arrayName.unshift(elt1,..., eltN)
Parameters
	elt1,...,eltN
	The elements to add to the front of the array.

Example
The following code displays the myFish array before and after adding elements to it.
myFish = ["angel", "clown"];
document.writeln("myFish before: " + myFish);
unshifted = myFish.unshift("drum", "lion");
document.writeln("myFish after: " + myFish);
document.writeln("New length: " + unshifted);
This example displays the following:
myFish before: ["angel", "clown"]
myFish after: ["drum", "lion", "angel", "clown"]
New length: 4
Boolean
The Boolean object is an object wrapper for a boolean value.
Created by
The Boolean constructor:
new Boolean(value)
Parameters
	value
	The initial value of the Boolean object. The value is converted to a boolean value, if necessary. If value is omitted or is 0, null, false, or the empty string (""), the object has an initial value of false. All other values, including the string "false", create an object with an initial value of true.

Description
Use a Boolean object when you need to convert a non-boolean value to a boolean value. You can use the Boolean object any place JavaScript expects a primitive boolean value. JavaScript returns the primitive value of the Boolean object by automatically invoking the valueOf method.
Property Summary
	prototype
	Defines a property that is shared by all Boolean objects.

Method Summary
	toString
	Returns a string representing the specified object.

Examples
The following examples create Boolean objects with an initial value of false:
bNoParam = new Boolean()
bZero = new Boolean(0)
bNull = new Boolean(null)
bEmptyString = new Boolean("")
bfalse = new Boolean(false)
The following examples create Boolean objects with an initial value of true:
btrue = new Boolean(true)
btrueString = new Boolean("true")
bfalseString = new Boolean("false")
bSuLin = new Boolean("Su Lin")
Properties
prototype
Represents the prototype for this class. You can use the prototype to add properties or methods to all instances of a class. For information on prototypes, see Function.prototype.
	Property of
	Boolean

Methods
toString
Returns a string representing the specified object.
	Method of
	Boolean

Syntax
toString()
Parameters
None.
Description
Every object has a toString method that is automatically called when it is to be represented as a text value or when an object is referred to in a string concatenation.
You can use toString within your own code to convert an object into a string, and you can create your own function to be called in place of the default toString method.
For Boolean objects and values, the built-in toString method returns "true" or "false" depending on the value of the boolean object. In the following code, flag.toString returns "true".
flag = new Boolean(true)
document.write("flag.toString() is " + flag.toString() + "
")
Date
Lets you work with dates and times.
	Core object

Created by
The Date constructor:
new Date()
new Date("month day, year hours:minutes:seconds")
new Date(yr_num, mo_num, day_num)
new Date(yr_num, mo_num, day_num, hr_num, min_num, sec_num)
Parameters
	month, day, year,
hours, minutes,
seconds
	String values representing part of a date.

	yr_num, mo_num,
day_num, hr_num,
min_num, sec_num
	Integer values representing part of a date. As an integer value, the month is represented by 0 to 11 with 0=January and 11=December.

Description
If you supply no arguments, the constructor creates a Date object for today's date and time. If you supply some arguments, but not others, the missing arguments are set to 0. If you supply any arguments, you must supply at least the year, month, and day. You can omit the hours, minutes, and seconds.
The way JavaScript handles dates is very similar to the way Java handles dates: both languages have many of the same date methods, and both store dates internally as the number of milliseconds since January 1, 1970 00:00:00. Dates prior to 1970 are not allowed.
Property Summary
	prototype
	Allows the addition of properties to a Date object.

Method Summary
	getDate
	Returns the day of the month for the specified date.

	getDay
	Returns the day of the week for the specified date.

	getHours
	Returns the hour in the specified date.

	getMinutes
	Returns the minutes in the specified date.

	getMonth
	Returns the month in the specified date.

	getSeconds
	Returns the seconds in the specified date.

	getTime
	Returns the numeric value corresponding to the time for the specified date.

	getTimezoneOffset
	Returns the time-zone offset in minutes for the current locale.

	getYear
	Returns the year in the specified date.

	parse
	Returns the number of milliseconds in a date string since January 1, 1970, 00:00:00, local time.

	setDate
	Sets the day of the month for a specified date.

	setHours
	Sets the hours for a specified date.

	setMinutes
	Sets the minutes for a specified date.

	setMonth
	Sets the month for a specified date.

	setSeconds
	Sets the seconds for a specified date.

	setTime
	Sets the value of a Date object.

	setYear
	Sets the year for a specified date.

	toGMTString
	Converts a date to a string, using the Internet GMT conventions.

	toLocaleString
	Converts a date to a string, using the current locale's conventions.

	UTC
	Returns the number of milliseconds in a Date object since January 1, 1970, 00:00:00, Universal Coordinated Time (GMT).

Examples
The following examples show several ways to assign dates:
today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,11,17)
birthday = new Date(95,11,17,3,24,0)
Properties
prototype
Represents the prototype for this class. You can use the prototype to add properties or methods to all instances of a class. For information on prototypes, see Function.prototype.
Methods
getDate
Returns the day of the month for the specified date.
Syntax
getDate()
Parameters
None
Description
The value returned by getDate is an integer between 1 and 31.
Examples
The second statement below assigns the value 25 to the variable day, based on the value of the Date object Xmas95.
Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()
See also
Date.setDate
getDay
Returns the day of the week for the specified date.
Syntax
getDay()
Parameters
None
Description
The value returned by getDay is an integer corresponding to the day of the week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.
Examples
The second statement below assigns the value 1 to weekday, based on the value of the Date object Xmas95. December 25, 1995, is a Monday.
Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()
getHours
Returns the hour for the specified date.
Syntax
getHours()
Parameters
None
Description
The value returned by getHours is an integer between 0 and 23.
Examples
The second statement below assigns the value 23 to the variable hours, based on the value of the Date object Xmas95.
Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()
getMinutes
Returns the minutes in the specified date.
	Method of
	Date

Syntax
getMinutes()
Parameters
None
Description
The value returned by getMinutes is an integer between 0 and 59.
Examples
The second statement below assigns the value 15 to the variable minutes, based on the value of the Date object Xmas95.
Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()
See also
Date.setMinutes
getMonth
Returns the month in the specified date.
	Method of
	Date

Syntax
getMonth()
Parameters
None
Description
The value returned by getMonth is an integer between 0 and 11. 0 corresponds to January, 1 to February, and so on.
Examples
The second statement below assigns the value 11 to the variable month, based on the value of the Date object Xmas95.
Xmas95 = new Date("December 25, 1995 23:15:00")
month = Xmas95.getMonth()

getSeconds
Returns the seconds in the current time.
	Method of
	Date

Syntax
getSeconds()
Parameters
None
Description
The value returned by getSeconds is an integer between 0 and 59.
Examples
The second statement below assigns the value 30 to the variable secs, based on the value of the Date object Xmas95.
Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()
getTime
Returns the numeric value corresponding to the time for the specified date.
Syntax
getTime()
Parameters
None
Description
The value returned by the getTime method is the number of milliseconds since 1 January 1970 00:00:00. You can use this method to help assign a date and time to another Date object.
Examples
The following example assigns the date value of theBigDay to sameAsBigDay:
theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())
getTimezoneOffset
Returns the time-zone offset in minutes for the current locale.
	Method of
	Date

Syntax
getTimezoneOffset()
Parameters
None
Description
The time-zone offset is the difference between local time and Greenwich Mean Time (GMT). Daylight savings time prevents this value from being a constant.
Examples
x = new Date()
currentTimeZoneOffsetInHours = x.getTimezoneOffset()/60
getYear
Returns the year in the specified date.
	Method of
	Date

Syntax
getYear()
Parameters
None
Description
The getYear method returns either a 2-digit or 4-digit year:
· For years between and including 1900 and 1999, the value returned by getYear is the year minus 1900. For example, if the year is 1976, the value returned is 76.
· For years less than 1900 or greater than 1999, the value returned by getYear is the four-digit year. For example, if the year is 1856, the value returned is 1856. If the year is 2026, the value returned is 2026.
Examples
Example 1. The second statement assigns the value 95 to the variable year.
Xmas = new Date("December 25, 1995 23:15:00")
year = Xmas.getYear()
Example 2. The second statement assigns the value 2000 to the variable year.
Xmas = new Date("December 25, 2000 23:15:00")
year = Xmas.getYear()
Example 3. The second statement assigns the value 95 to the variable year, representing the year 1995.
Xmas.setYear(95)
year = Xmas.getYear()
See also
Date.setYear
parse
Returns the number of milliseconds in a date string since January 1, 1970, 00:00:00, local time.
	Method of
	Date

	Static

Syntax
Date.parse(dateString)
Parameters
:
	dateString
	A string representing a date.

Description
The parse method takes a date string (such as "Dec 25, 1995") and returns the number of milliseconds since January 1, 1970, 00:00:00 (local time). This function is useful for setting date values based on string values, for example in conjunction with the setTime method and the Date object.
Given a string representing a time, parse returns the time value. It accepts the IETF standard date syntax: "Mon, 25 Dec 1995 13:30:00 GMT". It understands the continental US time-zone abbreviations, but for general use, use a time-zone offset, for example, "Mon, 25 Dec 1995 13:30:00 GMT+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do not specify a time zone, the local time zone is assumed. GMT and UTC are considered equivalent.
Because parse is a static method of Date, you always use it as Date.parse(), rather than as a method of a Date object you created.
Examples
If IPOdate is an existing Date object, then you can set it to August 9, 1995 as follows:
IPOdate.setTime(Date.parse("Aug 9, 1995"))
setDate
Sets the day of the month for a specified date.
	Method of
	Date

Syntax
setDate(dayValue)
Parameters
	dayValue
	An integer from 1 to 31, representing the day of the month.

Examples
The second statement below changes the day for theBigDay to July 24 from its original value.
theBigDay = new Date("July 27, 1962 23:30:00")
theBigDay.setDate(24)
See also
Date.getDate
setHours
Sets the hours for a specified date.
	Method of
	Date

Syntax
setHours(hoursValue)
Parameters
	hoursValue
	An integer between 0 and 23, representing the hour.

Examples
theBigDay.setHours(7)
See also
Date.getHours
setMinutes
Sets the minutes for a specified date.
	Method of
	Date

Syntax
setMinutes(minutesValue)
Parameters
	minutesValue
	An integer between 0 and 59, representing the minutes.

Examples
theBigDay.setMinutes(45)
setMonth
Sets the month for a specified date.
	Method of
	Date

Syntax
setMonth(monthValue)
Parameters
	monthValue
	An integer between 0 and 11 (representing the months January through December).

Examples
theBigDay.setMonth(6)
setSeconds
Sets the seconds for a specified date.
	Method of
	Date

Syntax
setSeconds(secondsValue)
Parameters
	secondsValue
	An integer between 0 and 59.

Examples
theBigDay.setSeconds(30)
See also
Date.getSeconds
setTime
Sets the value of a Date object.
	Method of
	Date

Syntax
setTime(timevalue)
Parameters
	timevalue
	An integer representing the number of milliseconds since 1 January 1970 00:00:00.

Description
Use the setTime method to help assign a date and time to another Date object.
Examples
theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())
setYear
Sets the year for a specified date.
	Method of
	Date

Syntax
setYear(yearValue)
Parameters
	yearValue
	An integer.

Description
If yearValue is a number between 0 and 99 (inclusive), then the year for dateObjectName is set to 1900 + yearValue. Otherwise, the year for dateObjectName is set to yearValue.

Examples
Note that there are two ways to set years in the 20th century.
Example 1. The year is set to 1996.
theBigDay.setYear(96)
Example 2. The year is set to 1996.
theBigDay.setYear(1996)
Example 3. The year is set to 2000.
theBigDay.setYear(2000)
toGMTString
Converts a date to a string, using the Internet GMT conventions.
	Method of
	Date

Syntax
toGMTString()
Parameters
None
Description
The exact format of the value returned by toGMTString varies according to the platform.
Examples
In the following example, today is a Date object:
today.toGMTString()
In this example, the toGMTString method converts the date to GMT (UTC) using the operating system's time-zone offset and returns a string value that is similar to the following form. The exact format depends on the platform.
Mon, 18 Dec 1995 17:28:35 GMT
toLocaleString
Converts a date to a string, using the current locale's conventions.
Syntax
toLocaleString()
Parameters
None
Description
If you pass a date using toLocaleString, be aware that different platforms assemble the string in different ways. Using methods such as getHours, getMinutes, and getSeconds gives more portable results.
Examples
In the following example, today is a Date object:
today = new Date(95,11,18,17,28,35) //months are represented by 0 to 11
today.toLocaleString()
In this example, toLocaleString returns a string value that is similar to the following form. The exact format depends on the platform.
12/18/95 17:28:35
UTC
Returns the number of milliseconds in a Date object since January 1, 1970, 00:00:00, Universal Coordinated Time (GMT).
Syntax
Date.UTC(year, month, day, hrs, min, sec)
Parameters
	year
	A year after 1900.

	month
	A month between 0 and 11.

	date
	A day of the month between 1 and 31.

	hrs
	(Optional) A number of hours between 0 and 23.

	min
	(Optional) A number of minutes between 0 and 59.

	sec
	(Optional) A number of seconds between 0 and 59.

Description
UTC takes comma-delimited date parameters and returns the number of milliseconds since January 1, 1970, 00:00:00, Universal Coordinated Time (GMT).
Because UTC is a static method of Date, you always use it as Date.UTC(), rather than as a method of a Date object you created.
Examples
The following statement creates a Date object using GMT instead of local time:
gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))
Function
Specifies a string of JavaScript code to be compiled as a function.
	Core object

Created by
The Function constructor:
new Function (arg1, arg2, ... argN, functionBody)

Parameters
	arg1, arg2, ... argN
	(Optional) Names to be used by the function as formal argument names. Each must be a string that corresponds to a valid JavaScript identifier; for example "x" or "theForm".

	functionBody
	A string containing the JavaScript statements comprising the function definition.

Description
Function objects are evaluated each time they are used. This is less efficient than declaring a function and calling it within your code, because declared functions are compiled.
In addition to defining functions as described here, you can also use the function statement, as described in the JavaScript Guide.
Property Summary
	arguments
	An array corresponding to the arguments passed to a function.

	arity
	Indicates the number of arguments expected by the function.

	caller
	Specifies which function called the current function.

	prototype
	Allows the addition of properties to a Function object.

Method Summary
	toString
	Returns a string representing the specified object.

Specifying a variable value with a Function object
The following code assigns a function to the variable setBGColor. This function sets the current document's background color.
var setBGColor = new Function("document.bgColor='antiquewhite'")
To call the Function object, you can specify the variable name as if it were a function. The following code executes the function specified by the setBGColor variable:
var colorChoice="antiquewhite"
if (colorChoice=="antiquewhite") {setBGColor()}
You can assign the function to an event handler in either of the following ways:
document.form1.colorButton.onclick=setBGColor
<INPUT NAME="colorButton" TYPE="button"
 VALUE="Change background color"
 onClick="setBGColor()">
Creating the variable setBGColor shown above is similar to declaring the following function:
function setBGColor() {
 document.bgColor='antiquewhite'
}
Assigning a function to a variable is similar to declaring a function, but they have differences:
· When you assign a function to a variable using var setBGColor = new Function("..."), setBGColor is a variable for which the current value is a reference to the function created with new Function().
· When you create a function using function setBGColor() {...}, setBGColor is not a variable, it is the name of a function.
Specifying arguments in a Function object
The following code specifies a Function object that takes two arguments.
var multFun = new Function("x", "y", "return x * y")
The string arguments "x" and "y" are formal argument names that are used in the function body, "return x * y".
The following code shows several ways to call the function multFun:
var theAnswer = multFun(7,6)
document.write("15*2 = " + multFun(15,2))
<INPUT NAME="operand1" TYPE="text" VALUE="5" SIZE=5>
<INPUT NAME="operand2" TYPE="text" VALUE="6" SIZE=5>
<INPUT NAME="result" TYPE="text" VALUE="" SIZE=10>
<INPUT NAME="buttonM" TYPE="button" VALUE="Multiply"
 onClick="document.form1.result.value=
 multFun(document.form1.operand1.value,
 document.form1.operand2.value)">
You cannot call the function multFun in an object's event handler property, because event handler properties cannot take arguments. For example, you cannot call the function multFun by setting a button's onclick property as follows:
document.form1.button1.onclick=multFun(5,10)
Specifying an event handler with a Function object
The following code assigns a function to a window's onFocus event handler (the event handler must be spelled in all lowercase):
window.onfocus = new Function("document.bgColor='antiquewhite'")
Once you have a reference to a function object, you can use it like a function and it will convert from an object to a function:
window.onfocus()
Event handlers do not take arguments, so you cannot declare any arguments in the Function constructor for an event handler.
Examples
Example 1. The following example creates onFocus and onBlur event handlers for a frame. This code exists in the same file that contains the FRAMESET tag. Note that this is the only way to create onFocus and onBlur event handlers for a frame, because you cannot specify the event handlers in the FRAME tag.
frames[0].onfocus = new Function("document.bgColor='antiquewhite'")
frames[0].onblur = new Function("document.bgColor='lightgrey'")
Example 2. You can determine whether a function exists by comparing the function name to null. In the following example, func1 is called if the function noFunc does not exist; otherwise func2 is called. Notice that the window name is needed when referring to the function name noFunc.
if (window.noFunc == null)
 func1()
else func2()
Properties
arguments
An array corresponding to the arguments passed to a function.
	Property of
	Function

Description
You can call a function with more arguments than it is formally declared to accept by using the arguments array. This technique is useful if a function can be passed a variable number of arguments. You can use arguments.length to determine the number of arguments passed to the function, and then treat each argument by using the arguments array.
The arguments array is available only within a function declaration. Attempting to access the arguments array outside a function declaration results in an error.
The this keyword does not refer to the currently executing function, so you must refer to functions and Function objects by name, even within the function body. In JavaScript 1.2, arguments includes these additional properties:
· formal arguments--each formal argument of a function is a property of the arguments array.
· local variables--each local variable of a function is a property of the arguments array.
· caller--a property whose value is the arguments array of the outer function. If there is no outer function, the value is undefined.
· callee--a property whose value is the function reference.
For example, the following script demonstrates several of the arguments properties:
<SCRIPT>
function b(z) {
 document.write(arguments.z + "
")
 document.write (arguments.caller.x + "
")
 return 99
}
function a(x, y) {
 return b(534)
}
document.write (a(2,3) + "
")
</SCRIPT>
This displays:
534
2
99
534 is the actual parameter to b, so it is the value of arguments.z.
2 is a's actual x parameter, so (viewed within b) it is the value of arguments.caller.x.
99 is what a(2,3) returns.
Examples
This example defines a function that creates HTML lists. The only formal argument for the function is a string that is "U" if the list is to be unordered (bulleted), or "O" if the list is to be ordered (numbered). The function is defined as follows:
function list(type) {
 document.write("<" + type + "L>")
 for (var i=1; i<list.arguments.length; i++) {
 document.write("" + list.arguments[i])
 document.write("</" + type + "L>")
 }
}
You can pass any number of arguments to this function, and it displays each argument as an item in the type of list indicated. For example, the following call to the function
list("U", "One", "Two", "Three")
results in this output:

One
Two
Three

In server-side JavaScript, you can display the same output by calling the write function instead of using document.write.
arity
When the LANGUAGE attribute of the SCRIPT tag is "JavaScript1.2", this property indicates the number of arguments expected by a function.
	Property of
	Function

Description
arity is external to the function, and indicates how many arguments the function expects. By contrast, arguments.length provides the number of arguments actually passed to the function.
Example
The following example demonstrates the use of arity and arguments.length.
<SCRIPT LANGUAGE = "JavaScript1.2">
function addNumbers(x,y){
 document.write("length = " + arguments.length + "
")
 z = x + y
}
document.write("arity = " + addNumbers.arity + "
")
addNumbers(3,4,5)
</SCRIPT>
This script writes:
arity = 2
length = 3
caller
Returns the name of the function that invoked the currently executing function.
	Property of
	Function

Description
The caller property is available only within the body of a function. If used outside a function declaration, the caller property is null.
If the currently executing function was invoked by the top level of a JavaScript program, the value of caller is null.
The this keyword does not refer to the currently executing function, so you must refer to functions and Function objects by name, even within the function body.
The caller property is a reference to the calling function, so
· If you use it in a string context, you get the result of calling functionName.toString. That is, the decompiled canonical source form of the function.
· You can also call the calling function, if you know what arguments it might want. Thus, a called function can call its caller without knowing the name of the particular caller, provided it knows that all of its callers have the same form and fit, and that they will not call the called function again unconditionally (which would result in infinite recursion).
Examples
The following code checks the value of a function's caller property.
function myFunc() {
 if (myFunc.caller == null) {
 alert("The function was called from the top!")
 } else alert("This function's caller was " + myFunc.caller)
}
prototype
A value from which instances of a particular class are created. Every object that can be created by calling a constructor function has an associated prototype property.
	Property of
	Object

Description
You can add new properties or methods to an existing class by adding them to the prototype associated with the constructor function for that class. The syntax for adding a new property or method is:
fun.prototype.name = value
where
	fun
	The name of the constructor function object you want to change.

	name
	The name of the property or method to be created.

	value
	The value initially assigned to the new property or method.

If you add a new property to the prototype for an object, then all objects created with that object's constructor function will have that new property, even if the objects existed before you created the new property. For example, assume you have the following statements:
var array1 = new Array();
var array2 = new Array(3);
Array.prototype.description=null;
array1.description="Contains some stuff"
array2.description="Contains other stuff"
After you set a property for the prototype, all subsequent objects created with Array will have the property:
anotherArray=new Array()
anotherArray.description="Currently empty"
Example
The following example creates a method, str_rep, and uses the statement String.prototype.rep = str_rep to add the method to all String objects. All objects created with new String() then have that method, even objects already created. The example then creates an alternate method and adds that to one of the String objects using the statement s1.rep = fake_rep. The str_rep method of the remaining String objects is not altered.
var s1 = new String("a")
var s2 = new String("b")
var s3 = new String("c")
// Create a repeat-string-N-times method for all String objects
function str_rep(n) {
 var s = "", t = this.toString()
 while (--n >= 0) s += t
 return s
}
String.prototype.rep = str_rep
// Display the results
document.write("<P>s1.rep(3) is " + s1.rep(3)) // "aaa"
document.write("
s2.rep(5) is " + s2.rep(5)) // "bbbbb"
document.write("
s3.rep(2) is " + s3.rep(2)) // "cc"
// Create an alternate method and assign it to only one String variable
function fake_rep(n) {
 return "repeat " + this + n + " times."
}
s1.rep = fake_rep
document.write("<P>s1.rep(1) is " + s1.rep(1)) // "repeat a 1 times."
document.write("
s2.rep(4) is " + s2.rep(4)) // "bbbb"
document.write("
s3.rep(6) is " + s3.rep(6)) // "cccccc"
This example produces the following output:
s1.rep(3) is aaa
s2.rep(5) is bbbbb
s3.rep(2) is cc
s1.rep(1) is repeat a1 times.
s2.rep(4) is bbbb
s3.rep(6) is cccccc
The function in this example also works on String objects not created with the String constructor. The following code returns "zzz".
"z".rep(3)
Methods
toString
Returns a string representing the specified object.
	Method of
	Function

Syntax
toString()
Parameters
None.
Description
Every object has a toString method that is automatically called when it is to be represented as a text value or when an object is referred to in a string concatenation.
You can use toString within your own code to convert an object into a string, and you can create your own function to be called in place of the default toString method.
For Function objects, the built-in toString method decompiles the function back into the JavaScript source that defines the function. This string includes the function keyword, the argument list, curly braces, and function body.
For example, assume you have the following code that defines the Dog object type and creates theDog, an object of type Dog:
function Dog(name,breed,color,sex) {
 this.name=name
 this.breed=breed
 this.color=color
 this.sex=sex
}
theDog = new Dog("Gabby","Lab","chocolate","girl")
Any time Dog is used in a string context, JavaScript automatically calls the toString function, which returns the following string:
function Dog(name, breed, color, sex) { this.name = name; this.breed = breed; this.color = color; this.sex = sex; }
Math
A built-in object that has properties and methods for mathematical constants and functions. For example, the Math object's PI property has the value of pi.
	Core object.

Created by
The Math object is a top-level, predefined JavaScript object. You can automatically access it without using a constructor or calling a method.
Description
All properties and methods of Math are static. You refer to the constant PI as Math.PI and you call the sine function as Math.sin(x), where x is the method's argument. Constants are defined with the full precision of real numbers in JavaScript.
It is often convenient to use the with statement when a section of code uses several Math constants and methods, so you don't have to type "Math" repeatedly. For example,
with (Math) {
 a = PI * r*r
 y = r*sin(theta)
 x = r*cos(theta)
}
Property Summary
	E
	Euler's constant and the base of natural logarithms, approximately 2.718.

	LN10
	Natural logarithm of 10, approximately 2.302.

	LN2
	Natural logarithm of 2, approximately 0.693.

	LOG10E
	Base 10 logarithm of E (approximately 0.434).

	LOG2E
	Base 2 logarithm of E (approximately 1.442).

	PI
	Ratio of the circumference of a circle to its diameter, approximately 3.14159.

	SQRT1_2
	Square root of 1/2; equivalently, 1 over the square root of 2, approximately 0.707.

	SQRT2
	Square root of 2, approximately 1.414.

Method Summary
	abs
	Returns the absolute value of a number.

	acos
	Returns the arccosine (in radians) of a number.

	asin
	Returns the arcsine (in radians) of a number.

	atan
	Returns the arctangent (in radians) of a number.

	atan2
	Returns the arctangent of the quotient of its arguments.

	ceil
	Returns the smallest integer greater than or equal to a number.

	cos
	Returns the cosine of a number.

	exp
	Returns Enumber, where number is the argument, and E is Euler's constant, the base of the natural logarithms.

	floor
	Returns the largest integer less than or equal to a number.

	log
	Returns the natural logarithm (base E) of a number.

	max
	Returns the greater of two numbers.

	min
	Returns the lesser of two numbers.

	pow
	Returns base to the exponent power, that is, baseexponent.

	random
	Returns a pseudo-random number between 0 and 1.

	round
	Returns the value of a number rounded to the nearest integer.

	sin
	Returns the sine of a number.

	sqrt
	Returns the square root of a number.

	tan
	Returns the tangent of a number.

Properties
E
Euler's constant and the base of natural logarithms, approximately 2.718.
	Property of
	Math

	Static, Read-only

Examples
The following function returns Euler's constant:
function getEuler() {
 return Math.E
}
Description
Because E is a static property of Math, you always use it as Math.E, rather than as a property of a Math object you created.
LN10
The natural logarithm of 10, approximately 2.302.
	Property of
	Math

	Static, Read-only

Examples
The following function returns the natural log of 10:
function getNatLog10() {
 return Math.LN10
}
Description
Because LN10 is a static property of Math, you always use it as Math.LN10, rather than as a property of a Math object you created.
LN2
The natural logarithm of 2, approximately 0.693.
	Property of
	Math

	Static, Read-only

Examples
The following function returns the natural log of 2:
function getNatLog2() {
 return Math.LN2
}
Description
Because LN2 is a static property of Math, you always use it as Math.LN2, rather than as a property of a Math object you created.
LOG10E
The base 10 logarithm of E (approximately 0.434).
	Property of
	Math

	Static, Read-only

Examples
The following function returns the base 10 logarithm of E:
function getLog10e() {
 return Math.LOG10E
}
Description
Because LOG10E is a static property of Math, you always use it as Math.LOG10E, rather than as a property of a Math object you created.
LOG2E
The base 2 logarithm of E (approximately 1.442).
	Property of
	Math

	Static, Read-only

Examples
The following function returns the base 2 logarithm of E:
function getLog2e() {
 return Math.LOG2E
}
Description
Because LOG2E is a static property of Math, you always use it as Math.LOG2E, rather than as a property of a Math object you created.
PI
The ratio of the circumference of a circle to its diameter, approximately 3.14159.
	Property of
	Math

	Static, Read-only

Examples
The following function returns the value of pi:
function getPi() {
 return Math.PI
}
Description
Because PI is a static property of Math, you always use it as Math.PI, rather than as a property of a Math object you created.
SQRT1_2
The square root of 1/2; equivalently, 1 over the square root of 2, approximately 0.707.
	Property of
	Math

	Static, Read-only

Examples
The following function returns 1 over the square root of 2:
function getRoot1_2() {
 return Math.SQRT1_2
}
Description
Because SQRT1_2 is a static property of Math, you always use it as Math.SQRT1_2, rather than as a property of a Math object you created.
SQRT2
The square root of 2, approximately 1.414.
	Property of
	Math

	Static, Read-only

Examples
The following function returns the square root of 2:
function getRoot2() {
 return Math.SQRT2
}
Description
Because SQRT2 is a static property of Math, you always use it as Math.SQRT2, rather than as a property of a Math object you created.
Methods
abs
Returns the absolute value of a number.
	Method of
	Math

	Static

Syntax
abs(x)
Parameters
	x
	A number

Examples
The following function returns the absolute value of the variable x:
function getAbs(x) {
 return Math.abs(x)
}
Description
Because abs is a static method of Math, you always use it as Math.abs(), rather than as a method of a Math object you created.
acos
Returns the arccosine (in radians) of a number.
	Method of
	Math

	Static

Syntax
acos(x)
Parameters
	x
	A number

Description
The acos method returns a numeric value between 0 and pi radians. If the value of number is outside this range, it returns 0.
Because acos is a static method of Math, you always use it as Math.acos(), rather than as a method of a Math object you created.
Examples
The following function returns the arccosine of the variable x:
function getAcos(x) {
 return Math.acos(x)
}
If you pass -1 to getAcos, it returns 3.141592653589793; if you pass 2, it returns 0 because 2 is out of range.
asin
Returns the arcsine (in radians) of a number.
	Method of
	Math

	Static

Syntax
asin(x)
Parameters
	x
	A number

Description
The asin method returns a numeric value between -pi/2 and pi/2 radians. If the value of number is outside this range, it returns 0.
Because asin is a static method of Math, you always use it as Math.asin(), rather than as a method of a Math object you created.
Examples
The following function returns the arcsine of the variable x:
function getAsin(x) {
 return Math.asin(x)
}
If you pass getAsin the value 1, it returns 1.570796326794897 (pi/2); if you pass it the value 2, it returns 0 because 2 is out of range.
atan
Returns the arctangent (in radians) of a number.
	Method of
	Math

	Static

Syntax
atan(x)
Parameters
	x
	A number

Description
The atan method returns a numeric value between -pi/2 and pi/2 radians.
Because atan is a static method of Math, you always use it as Math.atan(), rather than as a method of a Math object you created.
Examples
The following function returns the arctangent of the variable x:
function getAtan(x) {
 return Math.atan(x)
}
If you pass getAtan the value 1, it returns 0.7853981633974483; if you pass it the value .5, it returns 0.4636476090008061.
atan2
Returns the arctangent of the quotient of its arguments.
	Method of
	Math

	Static

Syntax
atan2(y, x)
Parameters
	y, x
	Number

Description
The atan2 method returns a numeric value between -pi and pi representing the angle theta of an (x,y) point. This is the counterclockwise angle, measured in radians, between the positive X axis, and the point (x,y). Note that the arguments to this function pass the y-coordinate first and the x-coordinate second.
atan2 is passed separate x and y arguments, and atan is passed the ratio of those two arguments.
Because atan2 is a static method of Math, you always use it as Math.atan2(), rather than as a method of a Math object you created.
Examples
The following function returns the angle of the polar coordinate:
function getAtan2(x,y) {
 return Math.atan2(x,y)
}
If you pass getAtan2 the values (90,15), it returns 1.4056476493802699; if you pass it the values (15,90), it returns 0.16514867741462683.
ceil
Returns the smallest integer greater than or equal to a number.
	Method of
	Math

	Static

Syntax
ceil(x)
Parameters
	x
	A number

Description
Because ceil is a static method of Math, you always use it as Math.ceil(), rather than as a method of a Math object you created.
Examples
The following function returns the ceil value of the variable x:
function getCeil(x) {
 return Math.ceil(x)
}
If you pass 45.95 to getCeil, it returns 46; if you pass -45.95, it returns -45.
cos
Returns the cosine of a number.
	Method of
	Math

	Static

Syntax
cos(x)
Parameters
	x
	A number

Description
The cos method returns a numeric value between -1 and 1, which represents the cosine of the angle.
Because cos is a static method of Math, you always use it as Math.cos(), rather than as a method of a Math object you created.
Examples
The following function returns the cosine of the variable x:
function getCos(x) {
 return Math.cos(x)
}
If x equals Math.PI/2, getCos returns 6.123031769111886e-017; if x equals Math.PI, getCos returns -1.
exp
Returns Ex, where x is the argument, and E is Euler's constant, the base of the natural logarithms.
	Method of
	Math

	Static

Syntax
exp(x)
Parameters
	x
	A number

Description
Because exp is a static method of Math, you always use it as Math.exp(), rather than as a method of a Math object you created.
Examples
The following function returns the exponential value of the variable x:
function getExp(x) {
 return Math.exp(x)
}
If you pass getExp the value 1, it returns 2.718281828459045.
floor
Returns the largest integer less than or equal to a number.
Syntax
floor(x)
Parameters
	x
	A number

Description
Because floor is a static method of Math, you always use it as Math.floor(), rather than as a method of a Math object you created.
Examples
The following function returns the floor value of the variable x:
function getFloor(x) {
 return Math.floor(x)
}
If you pass 45.95 to getFloor, it returns 45; if you pass -45.95, it returns -46.
See also
Math.ceil
log
Returns the natural logarithm (base E) of a number.
Syntax
log(x)
Parameters
	x
	A number

Description
If the value of number is outside the suggested range, the return value is always -1.797693134862316e+308.
Because log is a static method of Math, you always use it as Math.log(), rather than as a method of a Math object you created.
Examples
The following function returns the natural log of the variable x:
function getLog(x) {
 return Math.log(x)
}
If you pass getLog the value 10, it returns 2.302585092994046; if you pass it the value 0, it returns -1.797693134862316e+308 because 0 is out of range.
See also
Math.exp, Math.pow
max
Returns the larger of two numbers.
Syntax
max(x,y)
Parameters
	x, y
	Numbers.

Description
Because max is a static method of Math, you always use it as Math.max(), rather than as a method of a Math object you created.
Examples
The following function evaluates the variables x and y:
function getMax(x,y) {
 return Math.max(x,y)
}
If you pass getMax the values 10 and 20, it returns 20; if you pass it the values -10 and -20, it returns -10.
See also
Math.min
min
Returns the smaller of two numbers.
Syntax
min(x,y)
Parameters
	x, y
	Numbers.

Description
Because min is a static method of Math, you always use it as Math.min(), rather than as a method of a Math object you created.
Examples
The following function evaluates the variables x and y:
function getMin(x,y) {
 return Math.min(x,y)
}
If you pass getMin the values 10 and 20, it returns 10; if you pass it the values -10 and -20, it returns -20.
See also
Math.max
pow
Returns base to the exponent power, that is, baseexponent.
Syntax
pow(x,y)
Parameters
	base
	The base number

	exponent
	The exponent to which to raise base

Description
Because pow is a static method of Math, you always use it as Math.pow(), rather than as a method of a Math object you created.
Examples
function raisePower(x,y) {
 return Math.pow(x,y)
}
If x is 7 and y is 2, raisePower returns 49 (7 to the power of 2).
See also
Math.exp, Math.log
random
Returns a pseudo-random number between 0 and 1. The random number generator is seeded from the current time, as in Java.
Syntax
random()
Parameters
None.
Description
Because random is a static method of Math, you always use it as Math.random(), rather than as a method of a Math object you created.
Examples
//Returns a random number between 0 and 1
function getRandom() {
 return Math.random()
}
round
Returns the value of a number rounded to the nearest integer.
Syntax
round(x)
Parameters
	x
	A number

Description
If the fractional portion of number is .5 or greater, the argument is rounded to the next highest integer. If the fractional portion of number is less than .5, the argument is rounded to the next lowest integer.
Because round is a static method of Math, you always use it as Math.round(), rather than as a method of a Math object you created.
Examples
//Displays the value 20
document.write("The rounded value is " + Math.round(20.49))
//Displays the value 21
document.write("<P>The rounded value is " + Math.round(20.5))
//Displays the value -20
document.write("<P>The rounded value is " + Math.round(-20.5))
//Displays the value -21
document.write("<P>The rounded value is " + Math.round(-20.51))
In server-side JavaScript, you can display the same output by calling the write function instead of using document.write.
sin
Returns the sine of a number.
Syntax
sin(x)
Parameters
	x
	A number

Description
The sin method returns a numeric value between -1 and 1, which represents the sine of the argument.
Because sin is a static method of Math, you always use it as Math.sin(), rather than as a method of a Math object you created.
Examples
The following function returns the sine of the variable x:
function getSine(x) {
 return Math.sin(x)
}
If you pass getSine the value Math.PI/2, it returns 1.
See also
Math.acos, Math.asin, Math.atan, Math.atan2, Math.cos, Math.tan
sqrt
Returns the square root of a number.
Syntax
sqrt(x)
Parameters
	x
	A number

Description
If the value of number is outside the required range, sqrt returns 0.
Because sqrt is a static method of Math, you always use it as Math.sqrt(), rather than as a method of a Math object you created.
Examples
The following function returns the square root of the variable x:
function getRoot(x) {
 return Math.sqrt(x)
}
If you pass getRoot the value 9, it returns 3; if you pass it the value 2, it returns 1.414213562373095.
tan
Returns the tangent of a number.
Syntax
tan(x)
Parameters
	x
	A number

Description
The tan method returns a numeric value that represents the tangent of the angle.
Because tan is a static method of Math, you always use it as Math.tan(), rather than as a method of a Math object you created.
Examples
The following function returns the tangent of the variable x:
function getTan(x) {
 return Math.tan(x)
}
If you pass Math.PI/4 to getTan, it returns 0.9999999999999999.
Number
Lets you work with numeric values. The Number object is an object wrapper for primitive numeric values.
Created by
The Number constructor:
new Number(value);
Parameters
	value
	The numeric value of the object being created.

Description
The primary uses for the Number object are:
· To access its constant properties, which represent the largest and smallest representable numbers, positive and negative infinity, and the Not-a-Number value.
· To create numeric objects that you can add properties to. Most likely, you will rarely need to create a Number object.
The properties of Number are properties of the class itself, not of individual Number objects.
Navigator 4.0: Number(x) now produces NaN rather than an error if x is a string that does not contain a well-formed numeric literal. For example,
x=Number("three");
document.write(x + "
");
prints NaN
Property Summary
	MAX_VALUE
	The largest representable number.

	MIN_VALUE
	The smallest representable number.

	NaN
	Special "not a number" value.

	NEGATIVE_INFINITY
	Special infinite value; returned on overflow.

	POSITIVE_INFINITY
	Special negative infinite value; returned on overflow.

	prototype
	Allows the addition of properties to a Number object.

Method Summary
	toString
	Returns a string representing the specified object.

Examples
Example 1. The following example uses the Number object's properties to assign values to several numeric variables:
biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
negInfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN
Example 2. The following example creates a Number object, myNum, then adds a description property to all Number objects. Then a value is assigned to the myNum object's description property.
myNum = new Number(65)
Number.prototype.description=null
myNum.description="wind speed"
Properties
MAX_VALUE
The maximum numeric value representable in JavaScript.
Description
The MAX_VALUE property has a value of approximately 1.79E+308. Values larger than MAX_VALUE are represented as "Infinity".
Because MAX_VALUE is a static property of Number, you always use it as Number.MAX_VALUE, rather than as a property of a Number object you created.
Examples
The following code multiplies two numeric values. If the result is less than or equal to MAX_VALUE, the func1 function is called; otherwise, the func2 function is called.
if (num1 * num2 <= Number.MAX_VALUE)
 func1()
else
 func2()
MIN_VALUE
The smallest positive numeric value representable in JavaScript.
	Property of
	Number

	Static, Read-only

Description
The MIN_VALUE property is the number closest to 0, not the most negative number, that JavaScript can represent.
MIN_VALUE has a value of approximately 2.22E-308. Values smaller than MIN_VALUE ("underflow values") are converted to 0.
Because MIN_VALUE is a static property of Number, you always use it as Number.MIN_VALUE, rather than as a property of a Number object you created.
Examples
The following code divides two numeric values. If the result is greater than or equal to MIN_VALUE, the func1 function is called; otherwise, the func2 function is called.
if (num1 / num2 >= Number.MIN_VALUE)
 func1()
else
 func2()
NaN
A special value representing Not-A-Number. This value is represented as the unquoted literal NaN.
	Property of
	Number

	Read-only
	

Description
JavaScript prints the value Number.NaN as NaN.
NaN is always unequal to any other number, including NaN itself; you cannot check for the not-a-number value by comparing to Number.NaN. Use the isNaN function instead.
You might use the NaN property to indicate an error condition for a function that should return a valid number.
Examples
In the following example, if month has a value greater than 12, it is assigned NaN, and a message is displayed indicating valid values.
var month = 13
if (month < 1 || month > 12) {
 month = Number.NaN
 alert("Month must be between 1 and 12.")
}
See also
isNaN, parseFloat, parseInt
NEGATIVE_INFINITY
A special numeric value representing negative infinity. This value is displayed as "-Infinity".
	Property of
	Number

	Static, Read-only

Description
This value behaves mathematically like infinity; for example, anything multiplied by infinity is infinity, and anything divided by infinity is 0.
Because NEGATIVE_INFINITY is a static property of Number, you always use it as Number.NEGATIVE_INFINITY, rather than as a property of a Number object you created.
Examples
In the following example, the variable smallNumber is assigned a value that is smaller than the minimum value. When the if statement executes, smallNumber has the value "-Infinity", so the func1 function is called.
var smallNumber = -Number.MAX_VALUE*10
if (smallNumber == Number.NEGATIVE_INFINITY)
 func1()
else
 func2()
POSITIVE_INFINITY
A special numeric value representing infinity. This value is displayed as "Infinity".
	Property of
	Number

	Static, Read-only

Description
This value behaves mathematically like infinity; for example, anything multiplied by infinity is infinity, and anything divided by infinity is 0.
JavaScript does not have a literal for Infinity.
Because POSITIVE_INFINITY is a static property of Number, you always use it as Number.POSITIVE_INFINITY, rather than as a property of a Number object you created.
Examples
In the following example, the variable bigNumber is assigned a value that is larger than the maximum value. When the if statement executes, bigNumber has the value "Infinity", so the func1 function is called.
var bigNumber = Number.MAX_VALUE * 10
if (bigNumber == Number.POSITIVE_INFINITY)
 func1()
else
 func2()
prototype
Represents the prototype for this class. You can use the prototype to add properties or methods to all instances of a class. For information on prototypes, see Function.prototype.
	Property of
	Number

Methods
toString
Returns a string representing the specified object.
	Method of
	Number

Syntax
toString()
toString(radix)
Parameters
	radix
	(Optional) An integer between 2 and 16 specifying the base to use for representing numeric values.

Description
Every object has a toString method that is automatically called when it is to be represented as a text value or when an object is referred to in a string concatenation.
You can use toString within your own code to convert an object into a string, and you can create your own function to be called in place of the default toString method.
You can use toString on numeric values, but not on numeric literals:
// The next two lines are valid
var howMany=10
document.write("howMany.toString() is " + howMany.toString() + "
")
// The next line causes an error
document.write("45.toString() is " + 45.toString() + "
")
Object
Object is the primitive JavaScript object type. All JavaScript objects are descended from Object. That is, all JavaScript objects have the methods defined for Object.
	Core object

Created by
The Object constructor:
new Object();
Parameters
None
Property Summary
	constructor
	Specifies the function that creates an object's prototype.

	prototype
	Allows the addition of properties to all objects.

Method Summary
	eval
	Evaluates a string of JavaScript code in the context of the specified object.

	toString
	Returns a string representing the specified object.

	unwatch
	Removes a watchpoint from a property of the object.

	valueOf
	Returns the primitive value of the specified object.

	watch
	Adds a watchpoint to a property of the object.

Properties
constructor
Specifies the function that creates an object's prototype. Note that the value of this property is a reference to the function itself, not a string containing the function's name.
	Property of
	Object

Description
All objects inherit a constructor property from their prototype:
o = new Object // or o = {} in Navigator 4.0
o.constructor == Object
a = new Array // or a = [] in Navigator 4.0
a.constructor == Array
n = new Number(3)
n.constructor == Number
Even though you cannot construct most HTML objects, you can do comparisons. For example,
document.constructor == Document
document.form3.constructor == Form
Examples
The following example creates a prototype, Tree, and an object of that type, theTree. The example then displays the constructor property for the object theTree.
function Tree(name) {
 this.name=name
}
theTree = new Tree("Redwood")
document.writeln("theTree.constructor is " +
 theTree.constructor + "<P>")
This example displays the following output:
theTree.constructor is function Tree(name) { this.name = name; }
prototype
Represents the prototype for this class. You can use the prototype to add properties or methods to all instances of a class. For more information, see Function.prototype.
	Property of
	Object

Methods
eval
Evaluates a string of JavaScript code in the context of this object.
	Method of
	Object

Syntax
eval(string)
Parameters
	string
	Any string representing a JavaScript expression, statement, or sequence of statements. The expression can include variables and properties of existing objects.

Description
The argument of the eval method is a string. If the string represents an expression, eval evaluates the expression. If the argument represents one or more JavaScript statements, eval performs the statements. Do not call eval to evaluate an arithmetic expression; JavaScript evaluates arithmetic expressions automatically.
If you construct an arithmetic expression as a string, you can use eval to evaluate it at a later time. For example, suppose you have a variable x. You can postpone evaluation of an expression involving x by assigning the string value of the expression, say "3 * x + 2", to a variable, and then calling eval at a later point in your script.
eval is also a global function, not associated with any object.
NOTE: In Navigator 2.0, eval was a top-level function. In Navigator 3.0 eval was also a method of every object. The ECMA-262 standard for JavaScript made eval available only as a top-level function. For this reason, in Navigator 4.0, eval is once again a top-level function. In Navigator 4.02, obj.eval(str) is equivalent in all scopes to with(obj)eval(str), except of course that the latter is a statement, not an expression.
Examples
Example 1. The following example creates breed as a property of the object myDog, and also as a variable. The first write statement uses eval('breed') without specifying an object; the string "breed" is evaluated without regard to any object, and the write method displays "Shepherd", which is the value of the breed variable. The second write statement uses myDog.eval('breed') which specifies the object myDog; the string "breed" is evaluated with regard to the myDog object, and the write method displays "Lab", which is the value of the breed property of the myDog object.
function Dog(name,breed,color) {
 this.name=name
 this.breed=breed
 this.color=color
}
myDog = new Dog("Gabby")
myDog.breed="Lab"
var breed='Shepherd'
document.write("<P>" + eval('breed'))
document.write("
" + myDog.eval('breed'))
Example 2. The following example uses eval within a function that defines an object type, stone. The statement flint = new stone("x=42") creates the object flint with the properties x, y, z, and z2. The write statements display the values of these properties as 42, 43, 44, and 45, respectively.
function stone(str) {
 this.eval("this."+str)
 this.eval("this.y=43")
 this.z=44
 this["z2"] = 45
}
flint = new stone("x=42")
document.write("
flint.x is " + flint.x)
document.write("
flint.y is " + flint.y)
document.write("
flint.z is " + flint.z)
document.write("
flint.z2 is " + flint.z2)
See also
eval
toString
Returns a string representing the specified object.
	Method of
	Object

Syntax
toString()
toString(radix)
Parameters
	radix
	(Optional) An integer between 2 and 16 specifying the base to use for representing numeric values.

Security
Navigator 3.0: This method is tainted by default for the following objects: Button, Checkbox, FileUpload, Hidden, History, Link, Location, Password, Radio, Reset, Select, Submit, Text, and Textarea.
Description
Every object has a toString method that is automatically called when it is to be represented as a text value or when an object is referred to in a string concatenation. For example, the following examples require theDog to be represented as a string:
document.write(theDog)
document.write("The dog is " + theDog)
You can use toString within your own code to convert an object into a string, and you can create your own function to be called in place of the default toString method.
Built-in toString methods
Every object type has a built-in toString method, which JavaScript calls whenever it needs to convert an object to a string. If an object has no string value and no user-defined toString method, toString returns "[object type]", where type is the object type or the name of the constructor function that created the object. For example, if for an Image object named sealife defined as shown below, sealife.toString() returns [object Image].

Some built-in classes have special definitions for their toString methods. See the descriptions of this method for these objects:
Array, Boolean, Connection, database, DbPool, Function, Number
User-defined toString methods
You can create a function to be called in place of the default toString method. The toString method takes no arguments and should return a string. The toString method you create can be any value you want, but it will be most useful if it carries information about the object.
The following code defines the Dog object type and creates theDog, an object of type Dog:
function Dog(name,breed,color,sex) {
 this.name=name
 this.breed=breed
 this.color=color
 this.sex=sex
}
theDog = new Dog("Gabby","Lab","chocolate","girl")
The following code creates dogToString, the function that will be used in place of the default toString method. This function generates a string containing each property, of the form "property = value;".
function dogToString() {
 var ret = "Dog " + this.name + " is ["
 for (var prop in this)
 ret += " " + prop + " is " + this[prop] + ";"
 return ret + "]"
}
The following code assigns the user-defined function to the object's toString method:
Dog.prototype.toString = dogToString
With the preceding code in place, any time theDog is used in a string context, JavaScript automatically calls the dogToString function, which returns the following string:
Dog Gabby is [name is Gabby; breed is Lab; color is chocolate; sex is girl; toString is function dogToString() { var ret = "Object " + this.name + " is ["; for (var prop in this) { ret += " " + prop + " is " + this[prop] + ";"; } return ret + "]"; } ;]
An object's toString method is usually invoked by JavaScript, but you can invoke it yourself as follows:
alert(theDog.toString())
Examples
Example 1: The location object. The following example prints the string equivalent of the current location.
document.write("location.toString() is " + location.toString() + "
")
The output is as follows:
location.toString() is file:///C|/TEMP/myprog.html
Example 2: Object with no string value. Assume you have an Image object named sealife defined as follows:

Because the Image object itself has no special toString method, sealife.toString() returns the following:
[object Image]
Example 3: The radix parameter. The following example prints the string equivalents of the numbers 0 through 9 in decimal and binary.
for (x = 0; x < 10; x++) {
 document.write("Decimal: ", x.toString(10), " Binary: ",
 x.toString(2), "
")
}
The preceding example produces the following output:
Decimal: 0 Binary: 0
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Decimal: 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal: 8 Binary: 1000
Decimal: 9 Binary: 1001
See also
Object.valueOf
unwatch
Removes a watchpoint set with the watch method.
	Method of
	Object

Syntax
unwatch(prop)
Parameters
	prop
	The name of a property of the object.

Description
The JavaScript debugger has functionality similar to that provided by this method, as well as other debugging options. For information on the debugger, see Getting Started with Netscape JavaScript Debugger.
Example
See watch.
valueOf
Returns the primitive value of the specified object.
	Method of
	Object

Syntax
valueOf()
Parameters
None
Description
Every object has a valueOf method that is automatically called when it is to be represented as a primitive value. If an object has no primitive value, valueOf returns the object itself.
You can use valueOf within your own code to convert an object into a primitive value, and you can create your own function to be called in place of the default valueOf method.
Every object type has a built-in valueOf method, which JavaScript calls whenever it needs to convert an object to a primitive value.
You rarely need to invoke the valueOf method yourself. JavaScript automatically invokes it when encountering an object where a primitive value is expected.
Table 4.2 shows the object types for which the valueOf method is most useful. Most other objects have no primitive value.
Table 4.2 Use valueOf for these object types
	Object type
	Value returned by valueOf

	Number
	Primitive numeric value associated with the object.

	Boolean
	Primitive boolean value associated with the object.

	String
	String associated with the object.

	Function
	Function reference associated with the object. For example, typeof funObj returns "object", but typeof funObj.valueOf() returns "function".

You can create a function to be called in place of the default valueOf method. Your function must take no arguments.
Suppose you have an object type myNumberType and you want to create a valueOf method for it. The following code assigns a user-defined function to the object's valueOf method:
myNumberType.prototype.valueOf = new Function(functionText)
With the preceding code in place, any time an object of type myNumberType is used in a context where it is to be represented as a primitive value, JavaScript automatically calls the function defined in the preceding code.
An object's valueOf method is usually invoked by JavaScript, but you can invoke it yourself as follows:
myNumber.valueOf()
NOTE: Objects in string contexts convert via the toString method, which is different from String objects converting to string primitives using valueOf. All string objects have a string conversion, if only "[object type]". But many objects do not convert to number, boolean, or function.
watch
Watches for a property to be assigned a value and runs a function when that occurs.
	Method of
	Object

Syntax
watch(prop, handler)
Parameters
	prop
	The name of a property of the object.

	handler
	A function to call.

Description
Watches for assignment to a property named prop in this object, calling handler(prop, oldval, newval) whenever prop is set and storing the return value in that property. A watchpoint can filter (or nullify) the value assignment, by returning a modified newval (or oldval).
If you delete a property for which a watchpoint has been set, that watchpoint does not disappear. If you later recreate the property, the watchpoint is still in effect.
To remove a watchpoint, use the unwatch method.
The JavaScript debugger has functionality similar to that provided by this method, as well as other debugging options. For information on the debugger, see Getting Started with Netscape JavaScript Debugger.
Example
<script language="JavaScript1.2">
o = {p:1}
o.watch("p",
 function (id,oldval,newval) {
 document.writeln("o." + id + " changed from "
 + oldval + " to " + newval)
 return newval
 })
o.p = 2
o.p = 3
delete o.p
o.p = 4
o.unwatch('p')
o.p = 5
</script>
This script displays the following:
o.p changed from 1 to 2
o.p changed from 2 to 3
o.p changed from 3 to 4
RegExp
A regular expression object contains the pattern of a regular expression. It has properties and methods for using that regular expression to find and replace matches in strings.
In addition to the properties of an individual regular expression object that you create using the RegExp constructor function, the predefined RegExp object has static properties that are set whenever any regular expression is used.
	Core object

Created by
A literal text format or the RegExp constructor function.
The literal format is used as follows:
/pattern/flags
The constructor function is used as follows:
new RegExp("pattern", "flags")
Parameters
	pattern
	The text of the regular expression.

	flags
	(Optional) If specified, flags can have one of the following 3 values:
· g: global match
· i: ignore case
· gi: both global match and ignore case

Notice that the parameters to the literal format do not use quotation marks to indicate strings, while the parameters to the constructor function do use quotation marks. So the following expressions create the same regular expression:
/ab+c/i
new RegExp("ab+c", "i")
Description
When using the constructor function, the normal string escape rules (preceding special characters with \ when included in a string) are necessary. For example, the following are equivalent:
re = new RegExp("\\w+")
re = /\w+/
Table 4.3 provides a complete list and description of the special characters that can be used in regular expressions.
Table 4.3 Special characters in regular expressions.
	Character
	Meaning

	\
	For characters that are usually treated literally, indicates that the next character is special and not to be interpreted literally.
For example, /b/ matches the character 'b'. By placing a backslash in front of b, that is by using /\b/, the character becomes special to mean match a word boundary.
-or-
For characters that are usually treated specially, indicates that the next character is not special and should be interpreted literally.
For example, * is a special character that means 0 or more occurrences of the preceding character should be matched; for example, /a*/ means match 0 or more a's. To match * literally, precede the it with a backslash; for example, /a*/ matches 'a*'.

	^
	Matches beginning of input or line.
For example, /^A/ does not match the 'A' in "an A," but does match it in "An A."

	$
	Matches end of input or line.
For example, /t$/ does not match the 't' in "eater", but does match it in "eat"

	*
	Matches the preceding character 0 or more times.
For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in "A bird warbled", but nothing in "A goat grunted".

	+
	Matches the preceding character 1 or more times. Equivalent to {1,}.
For example, /a+/ matches the 'a' in "candy" and all the a's in "caaaaaaandy."

	?
	Matches the preceding character 0 or 1 time.
For example, /e?le?/ matches the 'el' in "angel" and the 'le' in "angle."

	.
	(The decimal point) matches any single character except the newline character.
For example, /.n/ matches 'an' and 'on' in "nay, an apple is on the tree", but not 'nay'.

	(x)
	Matches 'x' and remembers the match.
For example, /(foo)/ matches and remembers 'foo' in "foo bar." The matched substring can be recalled from the resulting array's elements [1], ..., [n], or from the predefined RegExp object's properties $1, ..., $9.

	x|y
	Matches either 'x' or 'y'.
For example, /green|red/ matches 'green' in "green apple" and 'red' in "red apple."

	{n}
	Where n is a positive integer. Matches exactly n occurrences of the preceding character.
For example, /a{2}/ doesn't match the 'a' in "candy," but it matches all of the a's in "caandy," and the first two a's in "caaandy."

	{n,}
	Where n is a positive integer. Matches at least n occurrences of the preceding character.
For example, /a{2,} doesn't match the 'a' in "candy", but matches all of the a's in "caandy" and in "caaaaaaandy."

	{n,m}
	Where n and m are positive integers. Matches at least n and at most m occurrences of the preceding character.
For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy," the first two a's in "caandy," and the first three a's in "caaaaaaandy" Notice that when matching "caaaaaaandy", the match is "aaa", even though the original string had more a's in it.

	[xyz]
	A character set. Matches any one of the enclosed characters. You can specify a range of characters by using a hyphen.
For example, [abcd] is the same as [a-c]. They match the 'b' in "brisket" and the 'c' in "ache".

	[^xyz]
	A negated or complemented character set. That is, it matches anything that is not enclosed in the brackets. You can specify a range of characters by using a hyphen.
For example, [^abc] is the same as [^a-c]. They initially match 'r' in "brisket" and 'h' in "chop."

	[\b]
	Matches a backspace. (Not to be confused with \b.)

	\b
	Matches a word boundary, such as a space. (Not to be confused with [\b].)
For example, /\bn\w/ matches the 'no' in "noonday";/\wy\b/ matches the 'ly' in "possibly yesterday."

	\B
	Matches a non-word boundary.
For example, /\w\Bn/ matches 'on' in "noonday", and /y\B\w/ matches 'ye' in "possibly yesterday."

	\cX
	Where X is a control character. Matches a control character in a string.
For example, /\cM/ matches control-M in a string.

	\d
	Matches a digit character. Equivalent to [0-9].
For example, /\d/ or /[0-9]/ matches '2' in "B2 is the suite number."

	\D
	Matches any non-digit character. Equivalent to [^0-9].
For example, /\D/ or /[^0-9]/ matches 'B' in "B2 is the suite number."

	\f
	Matches a form-feed.

	\n
	Matches a linefeed.

	\r
	Matches a carriage return.

	\s
	Matches a single white space character, including space, tab, form feed, line feed. Equivalent to [\f\n\r\t\v].
for example, /\s\w*/ matches ' bar' in "foo bar."

	\S
	Matches a single character other than white space. Equivalent to [^ \f\n\r\t\v].
For example, /\S/\w* matches 'foo' in "foo bar."

	\t
	Matches a tab

	\v
	Matches a vertical tab.

	\w
	Matches any alphanumeric character including the underscore. Equivalent to [A-Za-z0-9_].
For example, /\w/ matches 'a' in "apple," '5' in "$5.28," and '3' in "3D."

	\W
	Matches any non-word character. Equivalent to [^A-Za-z0-9_].
For example, /\W/ or /[^$A-Za-z0-9_]/ matches '%' in "50%."

	\n
	Where n is a positive integer. A back reference to the last substring matching the n parenthetical in the regular expression (counting left parentheses).
For example, /apple(,)\sorange\1/ matches 'apple, orange', in "apple, orange, cherry, peach." A more complete example follows this table.
Note: If the number of left parentheses is less than the number specified in \n, the \n is taken as an octal escape as described in the next row.

	\ooctal
\xhex
	Where \ooctal is an octal escape value or \xhex is a hexadecimal escape value. Allows you to embed ASCII codes into regular expressions.

The literal notation provides compilation of the regular expression when the expression is evaluated. Use literal notation when the regular expression will remain constant. For example, if you use literal notation to construct a regular expression used in a loop, the regular expression won't be recompiled on each iteration.
The constructor of the regular expression object, for example, new RegExp("ab+c"), provides runtime compilation of the regular expression. Use the constructor function when you know the regular expression pattern will be changing, or you don't know the pattern and are getting it from another source, such as user input. Once you have a defined regular expression, and if the regular expression is used throughout the script and may change, you can use the compile method to compile a new regular expression for efficient reuse.
A separate predefined RegExp object is available in each window; that is, each separate thread of JavaScript execution gets its own RegExp object. Because each script runs to completion without interruption in a thread, this assures that different scripts do not overwrite values of the RegExp object.
The predefined RegExp object contains the static properties input, multiline, lastMatch, lastParen, leftContext, rightContext, and $1 through $9. The input and multiline properties can be preset. The values for the other static properties are set after execution of the exec and test methods of an individual regular expression object, and after execution of the match and replace methods of String.
Property Summary
Note that several of the RegExp properties have both long and short (Perl-like) names. Both names always refer to the same value. Perl is the programming language from which JavaScript modeled its regular expressions.
	$1, ..., $9
	Parenthesized substring matches, if any.

	$_
	See input.

	$*
	See multiline.

	$&
	See lastMatch.

	$+
	See lastParen.

	$`
	See leftContext.

	$'
	See rightContext.

	global
	Whether or not to test the regular expression against all possible matches in a string, or only against the first.

	ignoreCase
	Whether or not to ignore case while attempting a match in a string.

	input
	The string against which a regular expression is matched.

	lastIndex
	The index at which to start the next match.

	lastMatch
	The last matched characters.

	lastParen
	The last parenthesized substring match, if any.

	leftContext
	The substring preceding the most recent match.

	multiline
	Whether or not to search in strings across multiple lines.

	rightContext
	The substring following the most recent match.

	source
	The text of the pattern.

Method Summary
	compile
	Compiles a regular expression object.

	exec
	Executes a search for a match in its string parameter.

	test
	Tests for a match in its string parameter.

Examples
Example 1. The following script uses the replace method to switch the words in the string. For the replacement text, the script uses the values of the $1 and $2 properties of the global RegExp object. Note that the RegExp object name is not be prepended to the $ properties when they are passed as the second argument to the replace method.
<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>
This displays "Smith, John".
Example 2. In the following example, RegExp.input is set by the Change event. In the getInfo function, the exec method uses the value of RegExp.input as its argument. Note that RegExp is prepended to the $ properties.
<HTML>
<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo() {
 re = /(\w+)\s(\d+)/;
 re.exec();
 window.alert(RegExp.$1 + ", your age is " + RegExp.$2);
}
</SCRIPT>
Enter your first name and your age, and then press Enter.
<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>
</HTML>
Properties
$1, ..., $9
Properties that contain parenthesized substring matches, if any.
	Property of
	RegExp

	Static, Read-only

Description
Because input is static, it is not a property of an individual regular expression object. Instead, you always use it as RegExp.input.
The number of possible parenthesized substrings is unlimited, but the predefined RegExp object can only hold the last nine. You can access all parenthesized substrings through the returned array's indexes.
These properties can be used in the replacement text for the String.replace method. When used this way, do not prepend them with RegExp. The example below illustrates this. When parentheses are not included in the regular expression, the script interprets $n's literally (where n is a positive integer).
Examples
The following script uses the replace method to switch the words in the string. For the replacement text, the script uses the values of the $1 and $2 properties of the global RegExp object. Note that the RegExp object name is not be prepended to the $ properties when they are passed as the second argument to the replace method.
<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>
This displays "Smith, John".
$_
See input.
$*
See multiline.
$&
See lastMatch.
$+
See lastParen.
$`
See leftContext.
$'
See rightContext.
global
Whether or not the "g" flag is used with the regular expression.
	Property of
	RegExp

	Read-only

Description
global is a property of an individual regular expression object.
The value of global is true if the "g" flag was used; otherwise, false. The "g" flag indicates that the regular expression should be tested against all possible matches in a string.
You cannot change this property directly. However, calling the compile method changes the value of this property.
ignoreCase
Whether or not the "i" flag is used with the regular expression.
	Property of
	RegExp

	Read-only

Description
ignoreCase is a property of an individual regular expression object.
The value of ignoreCase is true if the "i" flag was used; otherwise, false. The "i" flag indicates that case should be ignored while attempting a match in a string.
You cannot change this property directly. However, calling the compile method changes the value of this property.
input
The string against which a regular expression is matched. $_ is another name for the same property.
	Property of
	RegExp

	Static

Description
Because input is static, it is not a property of an individual regular expression object. Instead, you always use it as RegExp.input.
If no string argument is provided to a regular expression's exec or test methods, and if RegExp.input has a value, its value is used as the argument to that method.
The script or the browser can preset the input property. If preset and if no string argument is explicitly provided, the value of input is used as the string argument to the exec or test methods of the regular expression object. input is set by the browser in the following cases:
· When an event handler is called for a TEXT form element, input is set to the value of the contained text.
· When an event handler is called for a TEXTAREA form element, input is set to the value of the contained text. Note that multiline is also set to true so that the match can be executed over the multiple lines of text.
· When an event handler is called for a SELECT form element, input is set to the value of the selected text.
· When an event handler is called for a Link object, input is set to the value of the text between and .
The value of the input property is cleared after the event handler completes.
lastIndex
A read/write integer property that specifies the index at which to start the next match.
	Property of
	RegExp

Description
lastIndex is a property of an individual regular expression object.
This property is set only if the regular expression used the "g" flag to indicate a global search. The following rules apply:
· If lastIndex is greater than the length of the string, regexp.test and regexp.exec fail, and lastIndex is set to 0.
· If lastIndex is equal to the length of the string and if the regular expression matches the empty string, then the regular expression matches input starting at lastIndex.
· If lastIndex is equal to the length of the string and if the regular expression does not match the empty string, then the regular expression mismatches input, and lastIndex is reset to 0.
· Otherwise, lastIndex is set to the next position following the most recent match.
For example, consider the following sequence of statements:
	re = /(hi)?/g
	Matches the empty string.

	re("hi")
	Returns ["hi", "hi"] with lastIndex equal to 2.

	re("hi")
	Returns [""], an empty array whose zeroth element is the match string. In this case, the empty string because lastIndex was 2 (and still is 2) and "hi" has length 2.

lastMatch
The last matched characters. $& is another name for the same property.
	Property of
	RegExp

	Static, Read-only

Description
Because lastMatch is static, it is not a property of an individual regular expression object. Instead, you always use it as RegExp.lastMatch.
lastParen
The last parenthesized substring match, if any. $+ is another name for the same property.
	Property of
	RegExp

	Static, Read-only

Description
Because lastParen is static, it is not a property of an individual regular expression object. Instead, you always use it as RegExp.lastParen.
leftContext
The substring preceding the most recent match. $` is another name for the same property.
	Property of
	RegExp

	Static, Read-only

Description
Because leftContext is static, it is not a property of an individual regular expression object. Instead, you always use it as RegExp.leftContext.
multiline
Reflects whether or not to search in strings across multiple lines. $* is another name for the same property.
	Property of
	RegExp

	Static

Description
Because multiline is static, it is not a property of an individual regular expression object. Instead, you always use it as RegExp.multiline.
The value of multiline is true if multiple lines are searched, false if searches must stop at line breaks.
The script or the browser can preset the multiline property. When an event handler is called for a TEXTAREA form element, the browser sets multiline to true. multiline is cleared after the event handler completes. This means that, if you've preset multiline to true, it is reset to false after the execution of any event handler.
rightContext
The substring following the most recent match. $' is another name for the same property.
	Property of
	RegExp

	Static, Read-only

Description
Because rightContext is static, it is not a property of an individual regular expression object. Instead, you always use it as RegExp.rightContext.
source
A read-only property that contains the text of the pattern, excluding the forward slashes and "g" or "i" flags.
	Property of
	RegExp

	Read-only

Description
source is a property of an individual regular expression object.
You cannot change this property directly. However, calling the compile method changes the value of this property.
Methods
compile
Compiles a regular expression object during execution of a script.
	Method of
	RegExp

Syntax
regexp.compile(pattern, flags)
Parameters
	regexp
	The name of the regular expression. It can be a variable name or a literal.

	pattern
	A string containing the text of the regular expression.

	flags
	(Optional) If specified, flags can have one of the following 3 values:
· "g": global match
· "i": ignore case
· "gi": both global match and ignore case

Description
Use the compile method to compile a regular expression created with the RegExp constructor function. This forces compilation of the regular expression once only which means the regular expression isn't compiled each time it is encountered. Use the compile method when you know the regular expression will remain constant (after getting its pattern) and will be used repeatedly throughout the script.
You can also use the compile method to change the regular expression during execution. For example, if the regular expression changes, you can use the compile method to recompile the object for more efficient repeated use.
Calling this method changes the value of the regular expression's source, global, and ignoreCase properties.
exec
Executes the search for a match in a specified string. Returns a result array.
	Method of
	RegExp

Syntax
regexp.exec(str)
regexp(str)
Parameters
	regexp
	The name of the regular expression. It can be a variable name or a literal.

	str
	(Optional) The string against which to match the regular expression. If omitted, the value of RegExp.input is used.

Description
As shown in the syntax description, a regular expression's exec method call be called either directly, (with regexp.exec(str)) or indirectly (with regexp(str)).
If you are executing a match simply to find true or false, use the test method or the String search method.
If the match succeeds, the exec method returns an array and updates properties of the regular expression object and the predefined regular expression object, RegExp. If the match fails, the exec method returns null.
Consider the following example:
<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case
myRe=/d(b+)(d)/ig;
myArray = myRe.exec("cdbBdbsbz");
</SCRIPT>

The following table shows the results for this script:
	Object
	Property/Index
	Description
	Example

	myArray
	
	The contents of myArray
	["dbBd", "bB", "d"]

	
	index
	The 0-based index of the match in the string
	1

	
	input
	The original string
	cdbBdbsbz

	
	[0]
	The last matched characters
	dbBd

	
	[1], ...[n]
	The parenthesized substring matches, if any. The number of possible parenthesized substrings is unlimited.
	[1] = bB
[2] = d

	myRe
	lastIndex
	The index at which to start the next match.
	5

	
	ignoreCase
	Indicates if the "i" flag was used to ignore case
	true

	
	global
	Indicates if the "g" flag was used for a global match
	true

	
	source
	The text of the pattern
	d(b+)(d)

	RegExp
	lastMatch
$&
	The last matched characters
	dbBd

	
	leftContext
$\Q
	The substring preceding the most recent match
	c

	
	rightContext
$'
	The substring following the most recent match
	bsbz

	
	$1, ...$9
	The parenthesized substring matches, if any. The number of possible parenthesized substrings is unlimited, but RegExp can only hold the last nine.
	$1 = bB
$2 = d

	
	lastParen
$+
	The last parenthesized substring match, if any.
	d

If your regular expression uses the "g" flag, you can use the exec method multiple times to find successive matches in the same string. When you do so, the search starts at the substring of str specified by the regular expression's lastIndex property. For example, assume you have this script:
<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/ab*/g;
str = "abbcdefabh"
myArray = myRe.exec(str);
document.writeln("Found " + myArray[0] +
 ". Next match starts at " + myRe.lastIndex)
mySecondArray = myRe.exec(str);
document.writeln("Found " + mySecondArray[0] +
 ". Next match starts at " + myRe.lastIndex)
</SCRIPT>
This script displays the following text:
Found abb. Next match starts at 3
Found ab. Next match starts at 9
Examples
In the following example, the user enters a name and the script executes a match against the input. It then cycles through the array to see if other names match the user's name.
This script assumes that first names of registered party attendees are preloaded into the array A, perhaps by gathering them from a party database.
<HTML>
<SCRIPT LANGUAGE="JavaScript1.2">
A = ["Frank", "Emily", "Jane", "Harry", "Nick", "Beth", "Rick",
 "Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick",
 "Bill", "Tom", "Fiona", "Jane", "William", "Joan", "Beth"]
function lookup() {
 firstName = /\w+/i();
 if (!firstName)
 window.alert (RegExp.input + " isn't a name!");
 else {
 count = 0;
 for (i=0; i<A.length; i++)
 if (firstName[0].toLowerCase() == A[i].toLowerCase()) count++;
 if (count ==1)
 midstring = " other has ";
 else
 midstring = " others have ";
 window.alert ("Thanks, " + count + midstring + "the same name!")
 }
}
</SCRIPT>
Enter your first name and then press Enter.
<FORM> <INPUT TYPE:"TEXT" NAME="FirstName" onChange="lookup(this);"> </FORM>
</HTML>
test
Executes the search for a match between a regular expression and a specified string. Returns true or false.
	Method of
	RegExp

Syntax
regexp.test(str)
Parameters
	regexp
	The name of the regular expression. It can be a variable name or a literal.

	str
	(Optional) The string against which to match the regular expression. If omitted, the value of RegExp.input is used.

Description
When you want to know whether a pattern is found in a string use the test method (similar to the String.search method); for more information (but slower execution) use the exec method (similar to the String.match method).
Example
The following example prints a message which depends on the success of the test:
function testinput(re, str){
 if (re.test(str))
 midstring = " contains ";
 else
 midstring = " does not contain ";
 document.write (str + midstring + re.source);
}
String
An object representing a series of characters in a string.
	Core object

Created by
The String constructor:
new String(string);

Parameters
	string
	Any string.

Description
The String object is a built-in JavaScript object. You an treat any JavaScript string as a String object.
A string can be represented as a literal enclosed by single or double quotation marks; for example, "Netscape" or 'Netscape'.
Property Summary
	length
	Reflects the length of the string.

	prototype
	Allows the addition of properties to a String object.

Method Summary
	anchor
	Creates an HTML anchor that is used as a hypertext target.

	big
	Causes a string to be displayed in a big font as if it were in a BIG tag.

	blink
	Causes a string to blink as if it were in a BLINK tag.

	bold
	Causes a string to be displayed as if it were in a B tag.

	charAt
	Returns the character at the specified index.

	charCodeAt
	Returns a number indicating the ISO-Latin-1 codeset value of the character at the given index.

	concat
	Combines the text of two strings and returns a new string.

	fixed
	Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.

	fontcolor
	Causes a string to be displayed in the specified color as if it were in a tag.

	fontsize
	Causes a string to be displayed in the specified font size as if it were in a tag.

	fromCharCode
	Returns a string from the specified sequence of numbers that are
ISO-Latin-1 codeset values.

	indexOf
	Returns the index within the calling String object of the first occurrence of the specified value.

	italics
	Causes a string to be italic, as if it were in an I tag.

	lastIndexOf
	Returns the index within the calling String object of the last occurrence of the specified value.

	link
	Creates an HTML hypertext link that requests another URL.

	match
	Used to match a regular expression against a string.

	replace
	Used to find a match between a regular expression and a string, and to replace the matched substring with a new substring.

	search
	Executes the search for a match between a regular expression and a specified string.

	slice
	Extracts a section of a string and returns a new string.

	small
	Causes a string to be displayed in a small font, as if it were in a SMALL tag.

	split
	Splits a String object into an array of strings by separating the string into substrings.

	strike
	Causes a string to be displayed as struck-out text, as if it were in a STRIKE tag.

	sub
	Causes a string to be displayed as a subscript, as if it were in a SUB tag.

	substr
	Returns the characters in a string beginning at the specified location through the specified number of characters.

	substring
	Returns the characters in a string between two indexes into the string.

	sup
	Causes a string to be displayed as a superscript, as if it were in a SUP tag.

	toLowerCase
	Returns the calling string value converted to lowercase.

	toUpperCase
	Returns the calling string value converted to uppercase.

Examples
Example 1: String variable. The following statement creates a string variable:
var last_name = "Schaefer"
Example 2: String object properties. The following statements evaluate to 8, "SCHAEFER," and "schaefer":
last_name.length
last_name.toUpperCase()
last_name.toLowerCase()
Example 3: Accessing individual characters in a string. You can think of a string as an array of characters. In this way, you can access the individual characters in the string by indexing that array. For example, the following code:
var myString = "Hello"
document.write ("The first character in the string is " + myString[0])
displays "The first character in the string is H"
Example 4: Pass a string among scripts in different windows or frames. The following code creates two string variables and opens a second window:
var lastName = new String("Schaefer")
var firstName = new String ("Jesse")
empWindow=window.open('string2.html','window1','width=300,height=300')
If the HTML source for the second window (string2.html) creates two string variables, empLastName and empFirstName, the following code in the first window assigns values to the second window's variables:
empWindow.empFirstName=firstName
empWindow.empLastName=lastName
The following code in the first window displays the values of the second window's variables:
alert('empFirstName in empWindow is ' + empWindow.empFirstName)
alert('empLastName in empWindow is ' + empWindow.empLastName)
Properties
length
The length of the string.
	Property of
	String

	Read-only

Description
For a null string, length is 0.
Examples
The following example displays 8 in an Alert dialog box:
var x="Netscape"
alert("The string length is " + x.length)
prototype
Represents the prototype for this class. You can use the prototype to add properties or methods to all instances of a class. For information on prototypes, see Function.prototype.
	Property of
	String

Methods
anchor
Creates an HTML anchor that is used as a hypertext target.
	Method of
	String

Syntax
anchor(nameAttribute)
Parameters
	nameAttribute
	A string.

Description
Use the anchor method with the document.write or document.writeln methods to programmatically create and display an anchor in a document. Create the anchor with the anchor method, and then call write or writeln to display the anchor in a document. In server-side JavaScript, use the write function to display the anchor.
In the syntax, the text string represents the literal text that you want the user to see. The nameAttribute string represents the NAME attribute of the A tag.
Anchors created with the anchor method become elements in the document.anchors array.
Examples
The following example opens the msgWindow window and creates an anchor for the table of contents:
var myString="Table of Contents"
msgWindow.document.writeln(myString.anchor("contents_anchor"))
The previous example produces the same output as the following HTML:
Table of Contents
In server-side JavaScript, you can generate this HTML by calling the write function instead of using document.writeln.
See also
String.link
big
Causes a string to be displayed in a big font as if it were in a BIG tag.
	Method of
	String

Syntax
big()
Parameters
None
Description
Use the big method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to display the string.
Examples
The following example uses string methods to change the size of a string:
var worldString="Hello, world"
document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))
The previous example produces the same output as the following HTML:
<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>
See also
String.fontsize, String.small
blink
Causes a string to blink as if it were in a BLINK tag.
	Method of
	String

Syntax
blink()
Parameters
None
Description
Use the blink method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to display the string.
Examples
The following example uses string methods to change the formatting of a string:
var worldString="Hello, world"
document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())
The previous example produces the same output as the following HTML:
<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>
See also
String.bold, String.italics, String.strike
bold
Causes a string to be displayed as bold as if it were in a B tag.
	Method of
	String

Syntax
bold()
Parameters
None
Description
Use the bold method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to display the string.
Examples
The following example uses string methods to change the formatting of a string:
var worldString="Hello, world"
document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())
The previous example produces the same output as the following HTML:
<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>
See also
String.blink, String.italics, String.strike
charAt
Returns the specified character from the string.
	Method of
	String

Syntax
charAt(index)
Parameters
	index
	An integer between 0 and 1 less than the length of the string.

Description
Characters in a string are indexed from left to right. The index of the first character is 0, and the index of the last character in a string called stringName is stringName.length - 1. If the index you supply is out of range, JavaScript returns an empty string.
Examples
The following example displays characters at different locations in the string "Brave new world":
var anyString="Brave new world"
document.writeln("The character at index 0 is " + anyString.charAt(0))
document.writeln("The character at index 1 is " + anyString.charAt(1))
document.writeln("The character at index 2 is " + anyString.charAt(2))
document.writeln("The character at index 3 is " + anyString.charAt(3))
document.writeln("The character at index 4 is " + anyString.charAt(4))
These lines display the following:
The character at index 0 is B
The character at index 1 is r
The character at index 2 is a
The character at index 3 is v
The character at index 4 is e
In server-side JavaScript, you can display the same output by calling the write function instead of using document.write.
See also
String.indexOf, String.lastIndexOf, String.split
charCodeAt
Returns a number indicating the ISO-Latin-1 codeset value of the character at the given index.
	Method of
	String

Syntax
charCodeAt(index)
Parameters
	index
	(Optional) An integer between 0 and 1 less than the length of the string. The default value is 0.

Description
The ISO-Latin-1 codeset ranges from 0 to 255. The first 0 to 127 are a direct match of the ASCII character set.
Example
The following example returns 65, the ISO-Latin-1 codeset value for A.
"ABC".charCodeAt(0)
concat
Combines the text of two strings and returns a new string.
	Method of
	String

Syntax
concat(string2)
Parameters
	string1
	The first string.

	string2
	The second string.

Description
concat combines the text from two strings and returns a new string. Changes to the text in one string do not affect the other string.
Example
The following example combines two strings into a new string.
<SCRIPT>
str1="The morning is upon us. "
str2="The sun is bright."
str3=str1.concat(str2)
document.writeln(str1)
document.writeln(str2)
document.writeln(str3)
</SCRIPT>
This writes:
The morning is upon us.
The sun is bright.
The morning is upon us. The sun is bright.
fixed
Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.
	Method of
	String

Syntax
fixed()
Parameters
None
Description
Use the fixed method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to display the string.
Examples
The following example uses the fixed method to change the formatting of a string:
var worldString="Hello, world"
document.write(worldString.fixed())
The previous example produces the same output as the following HTML:
<TT>Hello, world</TT>
fontcolor
Causes a string to be displayed in the specified color as if it were in a tag.
	Method of
	String

Syntax
fontcolor(color)
Parameters
	color
	A string expressing the color as a hexadecimal RGB triplet or as a string literal. String literals for color names are listed in Appendix B, "Color Values," in the JavaScript Guide.

Description
Use the fontcolor method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to display the string.
If you express color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".
The fontcolor method overrides a value set in the fgColor property.
Examples
The following example uses the fontcolor method to change the color of a string:
var worldString="Hello, world"
document.write(worldString.fontcolor("maroon") +
 " is maroon in this line")
document.write("<P>" + worldString.fontcolor("salmon") +
 " is salmon in this line")
document.write("<P>" + worldString.fontcolor("red") +
 " is red in this line")
document.write("<P>" + worldString.fontcolor("8000") +
 " is maroon in hexadecimal in this line")
document.write("<P>" + worldString.fontcolor("FA8072") +
 " is salmon in hexadecimal in this line")
document.write("<P>" + worldString.fontcolor("FF00") +
 " is red in hexadecimal in this line")
The previous example produces the same output as the following HTML:
Hello, world is maroon in this line
<P>Hello, world is salmon in this line
<P>Hello, world is red in this line
Hello, world
is maroon in hexadecimal in this line
<P>Hello, world
is salmon in hexadecimal in this line
<P>Hello, world
is red in hexadecimal in this line
fontsize
Causes a string to be displayed in the specified font size as if it were in a tag.
	Method of
	String

Syntax
fontsize(size)
Parameters
	size
	An integer between 1 and 7, a string representing a signed integer between 1 and 7.

Description
Use the fontsize method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to display the string.
When you specify size as an integer, you set the size of stringName to one of the 7 defined sizes. When you specify size as a string such as "-2", you adjust the font size of stringName relative to the size set in the BASEFONT tag.
Examples
The following example uses string methods to change the size of a string:
var worldString="Hello, world"
document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))
The previous example produces the same output as the following HTML:
<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>
See also
String.big, String.small
fromCharCode
Returns a string created by using the specified sequence ISO-Latin-1 codeset values.
	Method of
	String

	Static

Syntax
fromCharCode(num1, ..., numN)
Parameters
	num1, ..., numN
	A sequence of numbers that are ISO-Latin-1 codeset values.

Description
This method returns a string and not a String object.
Because fromCharCode is a static method of String, you always use it as String.fromCharCode(), rather than as a method of a String object you created.
Examples
Example 1. The following example returns the string "ABC".
String.fromCharCode(65,66,67)
Example 2. The which property of the KeyDown, KeyPress, and KeyUp events contains the ASCII value of the key pressed at the time the event occurred. If you want to get the actual letter, number, or symbol of the key, you can use fromCharCode. The following example returns the letter, number, or symbol of the KeyPress event's which property.
String.fromCharCode(KeyPress.which)
indexOf
Returns the index within the calling String object of the first occurrence of the specified value, starting the search at fromIndex, or -1 if the value is not found.
	Method of
	String

Syntax
indexOf(searchValue, fromIndex)
Parameters
	searchValue
	A string representing the value to search for.

	fromIndex
	(Optional) The location within the calling string to start the search from. It can be any integer between 0 and 1 less than the length of the string. The default value is 0.

Description
Characters in a string are indexed from left to right. The index of the first character is 0, and the index of the last character of a string called stringName is stringName.length - 1.
If stringName contains an empty string (""), indexOf returns an empty string.
The indexOf method is case sensitive. For example, the following expression returns -1:
"Blue Whale".indexOf("blue")
Examples
Example 1. The following example uses indexOf and lastIndexOf to locate values in the string "Brave new world."
var anyString="Brave new world"
//Displays 8
document.write("<P>The index of the first w from the beginning is " +
 anyString.indexOf("w"))
//Displays 10
document.write("<P>The index of the first w from the end is " +
 anyString.lastIndexOf("w"))
//Displays 6
document.write("<P>The index of 'new' from the beginning is " +
 anyString.indexOf("new"))
//Displays 6
document.write("<P>The index of 'new' from the end is " +
 anyString.lastIndexOf("new"))
Example 2. The following example defines two string variables. The variables contain the same string except that the second string contains uppercase letters. The first writeln method displays 19. But because the indexOf method is case sensitive, the string "cheddar" is not found in myCapString, so the second writeln method displays -1.
myString="brie, pepper jack, cheddar"
myCapString="Brie, Pepper Jack, Cheddar"
document.writeln('myString.indexOf("cheddar") is ' +
 myString.indexOf("cheddar"))
document.writeln('<P>myCapString.indexOf("cheddar") is ' +
 myCapString.indexOf("cheddar"))
Example 3. The following example sets count to the number of occurrences of the letter x in the string str:
count = 0;
pos = str.indexOf("x");
while (pos != -1) {
 count++;
 pos = str.indexOf("x",pos+1);
}
See also
String.charAt, String.lastIndexOf, String.split
italics
Causes a string to be italic, as if it were in an I tag.
	Method of
	String

Syntax
italics()
Parameters
None
Description
Use the italics method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to display the string.
Examples
The following example uses string methods to change the formatting of a string:
var worldString="Hello, world"
document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())
The previous example produces the same output as the following HTML:
<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>
See also
String.blink, String.bold, String.strike
lastIndexOf
Returns the index within the calling String object of the last occurrence of the specified value. The calling string is searched backward, starting at fromIndex, or -1 if not found.
	Method of
	String

Syntax
lastIndexOf(searchValue, fromIndex)
Parameters
	searchValue
	A string representing the value to search for.

	fromIndex
	(Optional) The location within the calling string to start the search from. It can be any integer between 0 and 1 less than the length of the string. The default value is 1 less than the length of the string.

Description
Characters in a string are indexed from left to right. The index of the first character is 0, and the index of the last character is stringName.length - 1.
The lastIndexOf method is case sensitive. For example, the following expression returns -1:
"Blue Whale, Killer Whale".lastIndexOf("blue")
Examples
The following example uses indexOf and lastIndexOf to locate values in the string "Brave new world."
var anyString="Brave new world"
//Displays 8
document.write("<P>The index of the first w from the beginning is " +
 anyString.indexOf("w"))
//Displays 10
document.write("<P>The index of the first w from the end is " +
 anyString.lastIndexOf("w"))
//Displays 6
document.write("<P>The index of 'new' from the beginning is " +
 anyString.indexOf("new"))
//Displays 6
document.write("<P>The index of 'new' from the end is " +
 anyString.lastIndexOf("new"))
In server-side JavaScript, you can display the same output by calling the write function instead of using document.write.
See also
String.charAt, String.indexOf, String.split
link
Creates an HTML hypertext link that requests another URL.
	Method of
	String

Syntax
link(hrefAttribute)
Parameters
	hrefAttribute
	Any string that specifies the HREF attribute of the A tag; it should be a valid URL (relative or absolute).

Description
Use the link method to programmatically create a hypertext link, and then call write or writeln to display the link in a document. In server-side JavaScript, use the write function to display the link.
Links created with the link method become elements in the links array of the document object. See document.links.
Examples
The following example displays the word "Netscape" as a hypertext link that returns the user to the Netscape home page:
var hotText="Netscape"
var URL="http://home.netscape.com"
document.write("Click to return to " + hotText.link(URL))
The previous example produces the same output as the following HTML:
Click to return to Netscape
See also
Anchor
match
Used to match a regular expression against a string.
	Method of
	String

Syntax
match(regexp)
Parameters
	regexp
	Name of the regular expression. It can be a variable name or a literal.

Description
If you want to execute a global match, or a case insensitive match, include the g (for global) and i (for ignore case) flags in the regular expression. These can be included separately or together. The following two examples below show how to use these flags with match.
Note
If you execute a match simply to find true or false, use String.search or the regular expression test method.
Examples
Example 1. In the following example, match is used to find 'Chapter' followed by 1 or more numeric characters followed by a decimal point and numeric character 0 or more times. The regular expression includes the i flag so that case will be ignored.
<SCRIPT>
str = "For more information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;
found = str.match(re);
document.write(found);
</SCRIPT>
This returns the array containing Chapter 3.4.5.1,Chapter 3.4.5.1,.1
'Chapter 3.4.5.1' is the first match and the first value remembered from (Chapter \d+(\.\d)*).
'.1' is the second value remembered from (\.\d).
Example 2. The following example demonstrates the use of the global and ignore case flags with match.
<SCRIPT>
str = "abcDdcba";
newArray = str.match(/d/gi);
document.write(newArray);
</SCRIPT>
The returned array contains D, d.
replace
Used to find a match between a regular expression and a string, and to replace the matched substring with a new substring.
	Method of
	String

Syntax
replace(regexp, newSubStr)
Parameters
	regexp
	The name of the regular expression. It can be a variable name or a literal.

	newSubStr
	The string to put in place of the string found with regexp. This string can include the RegExp properties $1, ..., $9, lastMatch, lastParen, leftContext, and rightContext.

Description
This method does not change the String object it is called on; it simply returns a new string.
If you want to execute a global search and replace, or a case insensitive search, include the g (for global) and i (for ignore case) flags in the regular expression. These can be included separately or together. The following two examples below show how to use these flags with replace.
Examples
Example 1. In the following example, the regular expression includes the global and ignore case flags which permits replace to replace each occurrence of 'apples' in the string with 'oranges.'
<SCRIPT>
re = /apples/gi;
str = "Apples are round, and apples are juicy.";
newstr=str.replace(re, "oranges");
document.write(newstr)
</SCRIPT>
This prints "oranges are round, and oranges are juicy."
Example 2. In the following example, the regular expression is defined in replace and includes the ignore case flag.
<SCRIPT>
str = "Twas the night before Xmas...";
newstr=str.replace(/xmas/i, "Christmas");
document.write(newstr)
</SCRIPT>
This prints "Twas the night before Christmas..."
Example 3. The following script switches the words in the string. For the replacement text, the script uses the values of the $1 and $2 properties.
<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>
This prints "Smith, John".
search
Executes the search for a match between a regular expression and this String object.
	Method of
	String

Syntax
search(regexp)
Parameters
	regexp
	Name of the regular expression. It can be a variable name or a literal.

Description
If successful, search returns the index of the regular expression inside the string. Otherwise, it returns -1.
When you want to know whether a pattern is found in a string use search (similar to the regular expression test method); for more information (but slower execution) use match (similar to the regular expression exec method).

Example
The following example prints a message which depends on the success of the test.
function testinput(re, str){
 if (str.search(re) != -1)
 midstring = " contains ";
 else
 midstring = " does not contain ";
 document.write (str + midstring + re.source);
}
slice
Extracts a section of a string and returns a new string.
	Method of
	String

Syntax
slice(beginslice,endSlice)
Parameters
	beginSlice
	The zero-based index at which to begin extraction.

	endSlice
	(Optional) The zero-based index at which to end extraction. If omitted, slice extracts to the end of the string.

Description
slice extracts the text from one string and returns a new string. Changes to the text in one string do not affect the other string.
slice extracts up to but not including endSlice. string.slice(1,4) extracts the second character through the fourth character (characters indexed 1, 2, and 3).
As a negative index, endSlice indicates an offset from the end of the string. string.slice(2,-1) extracts the third character through the second to last character in the string.
Example
The following example uses slice to create a new string.
<SCRIPT>
str1="The morning is upon us. "
str2=str1.slice(3,-5)
document.write(str2)
</SCRIPT>
This writes:
morning is upon
small
Causes a string to be displayed in a small font, as if it were in a SMALL tag.
	Method of
	String

Syntax
small()
Parameters
None
Description
Use the small method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to display the string.
Examples
The following example uses string methods to change the size of a string:
var worldString="Hello, world"
document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))
The previous example produces the same output as the following HTML:
<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>
See also
String.big, String.fontsize
split
Splits a String object into an array of strings by separating the string into substrings.
	Method of
	String

Syntax
split(separator, limit)
Parameters
	separator
	(Optional) Specifies the character to use for separating the string. The separator is treated as a string. If separator is omitted, the array returned contains one element consisting of the entire string.

	limit
	(Optional) Integer specifying a limit on the number of splits to be found.

Description
The split method returns the new array.
When found, separator is removed from the string and the substrings are returned in an array. If separator is omitted, the array contains one element consisting of the entire string.
In Navigator 4.0, Split has the following additions:
· It can take a regular expression argument, as well as a fixed string, by which to split the object string. If separator is a regular expression, any included parenthesis cause submatches to be included in the returned array.
· It can take a limit count so that it won't include trailing empty elements in the resulting array.
· If you specify LANGUAGE="JavaScript1.2" in the SCRIPT tag, string.split(" ") splits on any run of 1 or more white space characters including spaces, tabs, line feeds, and carriage returns.
Examples
Example 1. The following example defines a function that splits a string into an array of strings using the specified separator. After splitting the string, the function displays messages indicating the original string (before the split), the separator used, the number of elements in the array, and the individual array elements.
function splitString (stringToSplit,separator) {
 arrayOfStrings = stringToSplit.split(separator)
 document.write ('<P>The original string is: "' + stringToSplit + '"')
 document.write ('
The separator is: "' + separator + '"')
 document.write ("
The array has " + arrayOfStrings.length + " elements: ")
 for (var i=0; i < arrayOfStrings.length; i++) {
 document.write (arrayOfStrings[i] + " / ")
 }
}
var tempestString="Oh brave new world that has such people in it."
var monthString="Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
var space=" "
var comma=","
splitString(tempestString,space)
splitString(tempestString)
splitString(monthString,comma)
This example produces the following output:
The original string is: "Oh brave new world that has such people in it."
The separator is: " "
The array has 10 elements: Oh / brave / new / world / that / has / such / people / in / it. /
The original string is: "Oh brave new world that has such people in it."
The separator is: "undefined"
The array has 1 elements: Oh brave new world that has such people in it. /
The original string is: "Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
The separator is: ","
The array has 12 elements: Jan / Feb / Mar / Apr / May / Jun / Jul / Aug / Sep / Oct / Nov / Dec /
Example 2. Consider the following script:
<SCRIPT LANGUAGE="JavaScript1.2">
str="She sells seashells \nby the\n seashore"
document.write(str + "
")
a=str.split(" ")
document.write(a)
</SCRIPT>
Using LANGUAGE="JavaScript1.2", this script produces
"She", "sells", "seashells", "by", "the", "seashore"
Without LANGUAGE="JavaScript1.2", this script splits only on single space characters, producing
"She", "sells", , , , "seashells", "by", , , "the", "seashore"
Example 3. In the following example, split looks for 0 or more spaces followed by a semicolon followed by 0 or more spaces and, when found, removes the spaces from the string. nameList is the array returned as a result of split.
<SCRIPT>
names = "Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand ";
document.write (names + "
" + "
");
re = /\s*;\s*/;
nameList = names.split (re);
document.write(nameList);
</SCRIPT>
This prints two lines; the first line prints the original string, and the second line prints the resulting array.
Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand
Example 4. In the following example, split looks for 0 or more spaces in a string and returns the first 3 splits that it finds.
<SCRIPT LANGUAGE="JavaScript1.2">
myVar = " Hello World. How are you doing? ";
splits = myVar.split(" ", 3);
document.write(splits)
</SCRIPT>
This script displays the following:
["Hello", "World.", "How"]
See also
String.charAt, String.indexOf, String.lastIndexOf
strike
Causes a string to be displayed as struck-out text, as if it were in a STRIKE tag.
	Method of
	String

Syntax
strike()
Parameters
None
Description
Use the strike method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to display the string.
Examples
The following example uses string methods to change the formatting of a string:
var worldString="Hello, world"
document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())
The previous example produces the same output as the following HTML:
<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>
See also
String.blink, String.bold, String.italics
sub
Causes a string to be displayed as a subscript, as if it were in a SUB tag.
	Method of
	String

Syntax
sub()
Parameters
None
Description
Use the sub method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to generate the HTML.

Examples
The following example uses the sub and sup methods to format a string:
var superText="superscript"
var subText="subscript"
document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")
The previous example produces the same output as the following HTML:
This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.
See also
String.sup
substr
Returns the characters in a string beginning at the specified location through the specified number of characters.
	Method of
	String

	 in
	Navigator 2.0, LiveWire 1.0

Syntax
substr(start, length)
Parameters
	start
	Location at which to begin extracting characters.

	length
	(Optional) The number of characters to extract

Description
start is a character index. The index of the first character is 0, and the index of the last character is 1 less than the length of the string. substr begins extracting characters at start and collects length number of characters.
If start is positive and is the length of the string or longer, substr returns no characters.
If start is negative, substr uses it as a character index from the end of the string. If start is negative and abs(start) is larger than the length of the string, substr uses 0 is the start index.
If length is 0 or negative, substr returns no characters. If length is omitted, start extracts characters to the end of the string.
Example
Consider the following script:
<SCRIPT LANGUAGE="JavaScript1.2">
str = "abcdefghij"
document.writeln("(1,2): ", str.substr(1,2))
document.writeln("(-2,2): ", str.substr(-2,2))
document.writeln("(1): ", str.substr(1))
document.writeln("(-20, 2): ", str.substr(1,20))
document.writeln("(20, 2): ", str.substr(20,2))
</SCRIPT>
This script displays:
(1,2): bc
(-2,2): ij
(1): bcdefghij
(-20, 2): bcdefghij
(20, 2):
See also
substring
substring
Returns a subset of a String object.
	Method of
	String

Syntax
substring(indexA, indexB)
Parameters
	indexA
	An integer between 0 and 1 less than the length of the string.

	indexB
	An integer between 0 and 1 less than the length of the string.

Description
substring extracts characters from indexA up to but not including indexB. In particular:
· If indexA is less than 0, indexA is treated as if it were 0.
· If indexB is greater than stringName.length, indexB is treated as if it were stringName.length.
· If indexA equals indexB, substring returns an empty string.
· If indexB is omitted, indexA extracts characters to the end of the string.
Using LANGUAGE="JavaScript1.2" in the SCRIPT tag,
· If indexA is greater than indexB, JavaScript produces a runtime error (out of memory).
Without LANGUAGE="JavaScript1.2",
· If indexA is greater than indexB, JavaScript returns a substring beginning with indexB and ending with indexA - 1.
Examples
Example 1. The following example uses substring to display characters from the string "Netscape":
var anyString="Netscape"
//Displays "Net"
document.write(anyString.substring(0,3))
document.write(anyString.substring(3,0))
//Displays "cap"
document.write(anyString.substring(4,7))
document.write(anyString.substring(7,4))
//Displays "Netscap"
document.write(anyString.substring(0,7))
//Displays "Netscape"
document.write(anyString.substring(0,8))
document.write(anyString.substring(0,10))
Example 2. The following example replaces a substring within a string. It will replace both individual characters and substrings. The function call at the end of the example changes the string "Brave New World" into "Brave New Web".
function replaceString(oldS,newS,fullS) {
// Replaces oldS with newS in the string fullS
 for (var i=0; i<fullS.length; i++) {
 if (fullS.substring(i,i+oldS.length) == oldS) {
 fullS = fullS.substring(0,i)+newS+fullS.substring(i+oldS.length,fullS.length)
 }
 }
 return fullS
}
replaceString("World","Web","Brave New World")
Example 3. Using LANGUAGE="JavaScript1.2", the following script produces a runtime error (out of memory).
<SCRIPT LANGUAGE="JavaScript1.2">
str="Netscape"
document.write(str.substring(0,3);
document.write(str.substring(3,0);
</SCRIPT>
Without LANGUAGE="JavaScript1.2", the above script prints
Net Net
In the second write, the index numbers are swapped.
See also
substr
sup
Causes a string to be displayed as a superscript, as if it were in a SUP tag.
	Method of
	String

Syntax
sup()
Parameters
None
Description
Use the sup method with the write or writeln methods to format and display a string in a document. In server-side JavaScript, use the write function to generate the HTML.
Examples
The following example uses the sub and sup methods to format a string:
var superText="superscript"
var subText="subscript"
document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")
The previous example produces the same output as the following HTML:
This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.
See also
String.sub

toLowerCase
Returns the calling string value converted to lowercase.
	Method of
	String

Syntax
toLowerCase()
Parameters
None
Description
The toLowerCase method returns the value of the string converted to lowercase. toLowerCase does not affect the value of the string itself.
Examples
The following example displays the lowercase string "alphabet":
var upperText="ALPHABET"
document.write(upperText.toLowerCase())
See also
String.toUpperCase
toUpperCase
Returns the calling string value converted to uppercase.
	Method of
	String

Syntax
toUpperCase()
Parameters
None
Description
The toUpperCase method returns the value of the string converted to uppercase. toUpperCase does not affect the value of the string itself.
Examples
The following example displays the string "ALPHABET":
var lowerText="alphabet"
document.write(lowerText.toUpperCase())

Chapter 5
Document
This chapter deals with the document and its associated objects, document, Layer, Link, Anchor, Area, Image, and Applet.
Table 5.1 summarizes the objects in this chapter.
Table 5.1 Document objects
	Object
	Description

	Anchor
	A place in a document that is the target of a hypertext link.

	Applet
	Includes a Java applet in a web page.

	Area
	Defines an area of an image as an image map.

	document
	Contains information on the current document, and provides methods for displaying HTML output to the user.

	Image
	An image on an HTML form.

	Layer
	Corresponds to a layer in an HTML page and provides a means for manipulating that layer.

	Link
	A piece of text, an image, or an area of an image identified as a hypertext link.

Anchor
A place in a document that is the target of a hypertext link.
	Client-side object
	

Created by
Using the HTML A tag or calling the String.anchor method. The JavaScript runtime engine creates an Anchor object corresponding to each A tag in your document that supplies the NAME attribute. It puts these objects in an array in the document.anchors property. You access an Anchor object by indexing this array.
To define an anchor with the String.anchor method:
theString.anchor(nameAttribute)
where:
	theString
	A String object.

	nameAttribute
	A string.

To define an anchor with the A tag, use standard HTML syntax. If you specify the NAME attribute, you can use the value of that attribute to index into the anchors array.
Description
If an Anchor object is also a Link object, the object has entries in both the anchors and links arrays.

Properties
None.
Methods
None.
Examples
Example 1: An anchor. The following example defines an anchor for the text "Welcome to JavaScript":
<H2>Welcome to JavaScript</H2>
If the preceding anchor is in a file called intro.html, a link in another file could define a jump to the anchor as follows:
Introduction
Example 2: anchors array. The following example opens two windows. The first window contains a series of buttons that set location.hash in the second window to a specific anchor. The second window defines four anchors named "0," "1," "2," and "3." (The anchor names in the document are therefore 0, 1, 2, ... (document.anchors.length-1).) When a button is pressed in the first window, the onClick event handler verifies that the anchor exists before setting window2.location.hash to the specified anchor name.
link1.html, which defines the first window and its buttons, contains the following code:
<HTML>
<HEAD>
<TITLE>Links and Anchors: Window 1</TITLE>
</HEAD>
<BODY>
<SCRIPT>
window2=open("link2.html","secondLinkWindow",
 "scrollbars=yes,width=250, height=400")
function linkToWindow(num) {
 if (window2.document.anchors.length > num)
 window2.location.hash=num
 else
 alert("Anchor does not exist!")
}
</SCRIPT>
Links and Anchors
<FORM>
<P>Click a button to display that anchor in window #2
<P><INPUT TYPE="button" VALUE="0" NAME="link0_button"
 onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="1" NAME="link0_button"
 onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="2" NAME="link0_button"
 onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="3" NAME="link0_button"
 onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="4" NAME="link0_button"
 onClick="linkToWindow(this.value)">
</FORM>
</BODY>
</HTML>
link2.html, which contains the anchors, contains the following code:
<HTML>
<HEAD>
<TITLE>Links and Anchors: Window 2</TITLE>
</HEAD>
<BODY>
Some numbers (Anchor 0)
one
two
three
four
<P>Some colors (Anchor 1)
red
orange
yellow
green
<P>Some music types (Anchor 2)
R&B
Jazz
Soul
Reggae
Rock
<P>Some countries (Anchor 3)
Afghanistan
Brazil
Canada
Finland
India
</BODY>
</HTML>
Applet
Includes a Java applet in a web page.
	Client-side object
	

Created by
The HTML APPLET tag. The JavaScript runtime engine creates an Applet object corresponding to each applet in your document. It puts these objects in an array in the document.applets property. You access an Applet object by indexing this array.
To define an applet, use standard HTML syntax. If you specify the NAME attribute, you can use the value of that attribute to index into the applets array. To refer to an applet in JavaScript, you must supply the MAYSCRIPT attribute in its definition.
Description
The author of an HTML page must permit an applet to access JavaScript by specifying the MAYSCRIPT attribute of the APPLET tag. This prevents an applet from accessing JavaScript on a page without the knowledge of the page author. For example, to allow the musicPicker.class applet access to JavaScript on your page, specify the following:
<APPLET CODE="musicPicker.class" WIDTH=200 HEIGHT=35
 NAME="musicApp" MAYSCRIPT>
Accessing JavaScript when the MAYSCRIPT attribute is not specified results in an exception.
Property Summary
All public properties of the applet are available for JavaScript access to the Applet object.
Method Summary
All public methods of the applet
Examples
The following code launches an applet called musicApp:
<APPLET CODE="musicSelect.class" WIDTH=200 HEIGHT=35
 NAME="musicApp" MAYSCRIPT>
</APPLET>

Area
Defines an area of an image as an image map. When the user clicks the area, the area's hypertext reference is loaded into its target window. Area objects are a type of Link object.
	Client-side object
	

document
Contains information about the current document, and provides methods for displaying HTML output to the user.
	Client-side object

Created by
The HTML BODY tag. The JavaScript runtime engine creates a document object for each HTML page. Each Window object has a document property whose value is a document object.
To define a document object, use standard HTML syntax for the BODY tag with the addition of JavaScript event handlers.
Event handlers
The onBlur, onFocus, onLoad, and onUnload event handlers are specified in the BODY tag but are actually event handlers for the Window object. The following are event handlers for the document object.
· onClick
· onDblClick
· onKeyDown
· onKeyPress
· onKeyUp
· onMouseDown
· onMouseUp
Description
An HTML document consists of HEAD and BODY tags. The HEAD tag includes information on the document's title and base (the absolute URL base to be used for relative URL links in the document). The BODY tag encloses the body of a document, which is defined by the current URL. The entire body of the document (all other HTML elements for the document) goes within the BODY tag.
You can load a new document by setting the Window.location property.
You can clear the document pane (and remove the text, form elements, and so on so they do not redisplay) with these statements:
document.close();
document.open();
document.write();
You can omit the document.open call if you are writing text or HTML, since write does an implicit open of that MIME type if the document stream is closed.
You can refer to the anchors, forms, and links of a document by using the anchors, forms, and links arrays. These arrays contain an entry for each anchor, form, or link in a document and are properties of the document object.
Do not use location as a property of the document object; use the document.URL property instead. The document.location property, which is a synonym for document.URL, will be removed in a future release.
Property Summary
	alinkColor
	A string that specifies the ALINK attribute.

	anchors
	An array containing an entry for each anchor in the document.

	applets
	An array containing an entry for each applet in the document.

	bgColor
	A string that specifies the BGCOLOR attribute.

	cookie
	Specifies a cookie.

	domain
	Specifies the domain name of the server that served a document.

	embeds
	An array containing an entry for each plug-in in the document.

	fgColor
	A string that specifies the TEXT attribute.

	formName
	A separate property for each named form in the document.

	forms
	An array a containing an entry for each form in the document.

	images
	An array containing an entry for each image in the document.

	lastModified
	A string that specifies the date the document was last modified.

	layers
	Array containing an entry for each layer within the document.

	linkColor
	A string that specifies the LINK attribute.

	links
	An array containing an entry for each link in the document.

	plugins
	An array containing an entry for each plug-in in the document.

	referrer
	A string that specifies the URL of the calling document.

	title
	A string that specifies the contents of the TITLE tag.

	URL
	A string that specifies the complete URL of a document.

	vlinkColor
	A string that specifies the VLINK attribute.

Method Summary
	captureEvents
	Sets the document to capture all events of the specified type.

	close
	Closes an output stream and forces data to display.

	getSelection
	Returns a string containing the text of the current selection.

	handleEvent
	Invokes the handler for the specified event.

	open
	Opens a stream to collect the output of write or writeln methods.

	releaseEvents
	Sets the window or document to release captured events of the
specified type, sending the event to objects further along the event hierarchy.

	routeEvent
	Passes a captured event along the normal event hierarchy.

	write
	Writes one or more HTML expressions to a document in the specified window.

	writeln
	Writes one or more HTML expressions to a document in the specified window and follows them with a newline character.

Examples
The following example creates two frames, each with one document. The document in the first frame contains links to anchors in the document of the second frame. Each document defines its colors.
doc0.html, which defines the frames, contains the following code:
<HTML>
<HEAD>
<TITLE>Document object example</TITLE>
</HEAD>
<FRAMESET COLS="30%,70%">
<FRAME SRC="doc1.html" NAME="frame1">
<FRAME SRC="doc2.html" NAME="frame2">
</FRAMESET>
</HTML>
doc1.html, which defines the content for the first frame, contains the following code:
<HTML>
<SCRIPT>
</SCRIPT>
<BODY
 BGCOLOR="antiquewhite"
 TEXT="darkviolet"
 LINK="fuchsia"
 ALINK="forestgreen"
 VLINK="navy">
<P>Some links
Numbers
Colors
Music types
Countries
</BODY>
</HTML>
doc2.html, which defines the content for the second frame, contains the following code:
<HTML>
<SCRIPT>
</SCRIPT>
<BODY
 BGCOLOR="oldlace" onLoad="alert('Hello, World.')"
 TEXT="navy">
<P>Some numbers
one
two
three
four
<P>Some colors
red
orange
yellow
green
<P>Some music types
R&B
Jazz
Soul
Reggae
<P>Some countries
Afghanistan
Brazil
Canada
Finland
</BODY>
</HTML>
See also
Frame, Window
Properties
alinkColor
A string specifying the color of an active link (after mouse-button down, but before mouse-button up).
	Property of
	document

Description
The alinkColor property is expressed as a hexadecimal RGB triplet or as one of the string literals listed in Appendix B, "Color Values," in the JavaScript Guide This property is the JavaScript reflection of the ALINK attribute of the BODY tag. You cannot set this property after the HTML source has been through layout.
If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".
Examples
The following example sets the color of active links using a string literal:
document.alinkColor="aqua"
The following example sets the color of active links to aqua using a hexadecimal triplet:
document.alinkColor="00FFFF"
See also
document.bgColor, document.fgColor, document.linkColor, document.vlinkColor
anchors
An array of objects corresponding to named anchors in source order.
	Property of
	document

	Read-only

Description
You can refer to the Anchor objects in your code by using the anchors array. This array contains an entry for each A tag containing a NAME attribute in a document; these entries are in source order. For example, if a document contains three named anchors whose NAME attributes are anchor1, anchor2, and anchor3, you can refer to the anchors either as:
document.anchors["anchor1"]
document.anchors["anchor2"]
document.anchors["anchor3"]
or as:
document.anchors[0]
document.anchors[1]
document.anchors[2]
To obtain the number of anchors in a document, use the length property: document.anchors.length. If a document names anchors in a systematic way using natural numbers, you can use the anchors array and its length property to validate an anchor name before using it in operations such as setting location.hash.
applets
An array of objects corresponding to the applets in a document in source order.
	Property of
	document

	Read-only

Description
You can refer to the applets in your code by using the applets array. This array contains an entry for each Applet object (APPLET tag) in a document; these entries are in source order. For example, if a document contains three applets whose NAME attributes are app1, app2, and app3, you can refer to the anchors either as:
document.applets["app1"]
document.applets["app2"]
document.applets["app3"]
or as:
document.applets[0]
document.applets[1]
document.applets[2]
bgColor
A string specifying the color of the document background.
	Property of
	document

Description
The bgColor property is expressed as a hexadecimal RGB triplet or as one of the string literals. This property is the JavaScript reflection of the BGCOLOR attribute of the BODY tag. The default value of this property is set by the user with the preferences dialog box.
If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".
Examples
The following example sets the color of the document background to aqua using a string literal:
document.bgColor="aqua"
The following example sets the color of the document background to aqua using a hexadecimal triplet:
document.bgColor="00FFFF"
See also
document.alinkColor, document.fgColor, document.linkColor, document.vlinkColor
cookie
String value representing all of the cookies associated with this document.
	Property of
	document

Description
A cookie is a small piece of information stored by the web browser in the cookies.txt file. Use string methods such as substring, charAt, indexOf, and lastIndexOf to determine the value stored in the cookie.

You can set the cookie property at any time.
The "expires=" component in the cookie file sets an expiration date for the cookie, so it persists beyond the current browser session. This date string is formatted as follows:
Wdy, DD-Mon-YY HH:MM:SS GMT
This format represents the following values:
· Wdy is a string representing the full name of the day of the week.
· DD is an integer representing the day of the month.
· Mon is a string representing the three-character abbreviation of the month.
· YY is an integer representing the last two digits of the year.
· HH, MM, and SS are 2-digit representations of hours, minutes, and seconds, respectively.
For example, a valid cookie expiration date is
expires=Wednesday, 09-Nov-99 23:12:40 GMT
The cookie date format is the same as the date returned by toGMTString, with the following exceptions:
· Dashes are added between the day, month, and year.
· The year is a 2-digit value for cookies.
Examples
The following function uses the cookie property to record a reminder for users of an application. The cookie expiration date is set to one day after the date of the reminder.
function RecordReminder(time, expression) {
 // Record a cookie of the form "@<T>=<E>" to map
 // from <T> in milliseconds since the epoch,
 // returned by Date.getTime(), onto an encoded expression,
 // <E> (encoded to contain no white space, semicolon,
 // or comma characters)
 document.cookie = "@" + time + "=" + expression + ";"
 // set the cookie expiration time to one day
 // beyond the reminder time
 document.cookie += "expires=" + cookieDate(time + 24*60*60*1000)
 // cookieDate is a function that formats the date
 //according to the cookie spec
}
See also
Hidden
domain
Specifies the domain name of the server that served a document.
	Property of
	document

.
Description
Navigator 3.0: The domain property lets scripts on multiple servers share properties when data tainting is not enabled. With tainting disabled, a script running in one window can read properties of another window only if both windows come from the same Web server. But large Web sites with multiple servers might need to share properties among servers. For example, a script on the host www.royalairways.com might need to share properties with a script on the host search.royalairways.com.
If scripts on two different servers change their domain property so that both scripts have the same domain name, both scripts can share properties. For example, a script loaded from search.royalairways.com could set its domain property to "royalairways.com". A script from www.royalairways.com running in another window could also set its domain property to "royalairways.com". Then, since both scripts have the domain "royalairways.com", these two scripts can share properties, even though they did not originate from the same server.
You can change domain only in a restricted way. Initially, domain contains the hostname of the Web server from which the document was loaded. You can set domain only to a domain suffix of itself. For example, a script from search.royalairways.com can't set its domain property to "search.royalairways". And a script from IWantYourMoney.com cannot set its domain to "royalairways.com".
Once you change the domain property, you cannot change it back to its original value. For example, if you change domain from "search.royalairways.com" to "royalairways.com", you cannot reset it to "search.royalairways.com".

Examples
The following statement changes the domain property to "braveNewWorld.com". This statement is valid only if "braveNewWorld.com" is a suffix of the current domain, such as "www.braveNewWorld.com".
document.domain="braveNewWorld.com"
embeds
An array containing an entry for each object embedded in the document.
	Property of
	document

	Read-only

Description
You can refer to embedded objects (created with the EMBED tag) in your code by using the embeds array. This array contains an entry for each EMBED tag in a document in source order. For example, if a document contains three embedded objects whose NAME attributes are e1, e2, and e3, you can refer to the objects either as:
document.embeds["e1"]
document.embeds["e2"]
document.embeds["e3"]
or as:
document.embeds[0]
document.embeds[1]
document.embeds[2]
Elements in the embeds array may have public callable functions, if they refer to a plug-in that uses LiveConnect. See the JavaScript Guide.
Use the elements in the embeds array to interact with the plug-in that is displaying the embedded object. If a plug-in is not Java-enabled, you cannot do anything with its element in the embeds array. The fields and methods of the elements in the embeds array vary from plug-in to plug-in; see the documentation supplied by the plug-in manufacturer.
When you use the EMBED tag to generate output from a plug-in application, you are not creating a Plugin object.
Examples
The following code includes an audio plug-in in a document.
<EMBED SRC="train.au" HEIGHT=50 WIDTH=250>
See also
Plugin
fgColor
A string specifying the color of the document (foreground) text.
	Property of
	document

Description
The fgColor property is expressed as a hexadecimal RGB triplet or as one of the string literals listed in Appendix B, "Color Values," in the JavaScript Guide. This property is the JavaScript reflection of the TEXT attribute of the BODY tag. The default value of this property is set by the user with the preferences dialog box You cannot set this property after the HTML source has been through layout.
If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".
You can override the value set in the fgColor property in either of the following ways:
· Setting the COLOR attribute of the FONT tag.
· Using the fontcolor method.
formName
	Property of
	document

The document object contains a separate property for each form in the document. The name of this property is the value of its NAME attribute. See Form for information on Form objects. You cannot add new forms to the document by creating new properties, but you can modify the form by modifying this object.
forms
An array containing an entry for each form in the document.
	Property of
	document

	Read-only

.
Description
You can refer to the forms in your code by using the forms array (you can also use the form name). This array contains an entry for each Form object (FORM tag) in a document; these entries are in source order. For example, if a document contains three forms whose NAME attributes are form1, form2, and form3, you can refer to the objects in the forms array either as:
document.forms["form1"]
document.forms["form2"]
document.forms["form3"]
or as:
document.forms[0]
document.forms[1]
document.forms[2]
Additionally, the document object has a separate property for each named form, so you could refer to these forms also as:
document.form1
document.form2
document.form3
For example, you would refer to a Text object named quantity in the second form as document.forms[1].quantity. You would refer to the value property of this Text object as document.forms[1].quantity.value.
The value of each element in the forms array is <object nameAttribute>, where nameAttribute is the NAME attribute of the form.
images
An array containing an entry for each image in the document.
	Property of
	document

	Read-only

You can refer to the images in a document by using the images array. This array contains an entry for each Image object (IMG tag) in a document; the entries are in source order. Images created with the Image constructor are not included in the images array. For example, if a document contains three images whose NAME attributes are im1, im2, and im3, you can refer to the objects in the images array either as:
document.images["im1"]
document.images["im2"]
document.images["im3"]
or as:
document.images[0]
document.images[1]
document.images[2]
lastModified
A string representing the date that a document was last modified.
	Property of
	document

	Read-only

Description
The lastModified property is derived from the HTTP header data sent by the web server. Servers generally obtain this date by examining the file's modification date.
The last modified date is not a required portion of the header, and some servers do not supply it. If the server does not return the last modified information, JavaScript receives a 0, which it displays as January 1, 1970 GMT. The following code checks the date returned by lastModified and prints out a value that corresponds to unknown.
lastmod = document.lastModified // get string of last modified date
lastmoddate = Date.parse(lastmod) // convert modified string to date
if(lastmoddate == 0){ // unknown date (or January 1, 1970 GMT)
 document.writeln("Lastmodified: Unknown")
 } else {
 document.writeln("LastModified: " + lastmod)
}
Examples
In the following example, the lastModified property is used in a SCRIPT tag at the end of an HTML file to display the modification date of the page:
document.write("This page updated on " + document.lastModified)
layers
The layers property is an array containing an entry for each layer within the document.
	Property of
	document

Description
You can refer to the layers in your code by using the layers array. This array contains an entry for each Layer object (LAYER or ILAYER tag) in a document; these entries are in source order. For example, if a document contains three layers whose NAME attributes are layer1, layer2, and layer3, you can refer to the objects in the layers array either as:
document.layers["layer1"]
document.layers["layer2"]
document.layers["layer3"]
or as:
document.layers[0]
document.layers[1]
document.layers[2]
When accessed by integer index, array elements appear in z-order from back to front, where 0 is the bottommost layer and higher layers are indexed by consecutive integers. The index of a layer is not the same as its zIndex property, as the latter does not necessarily enumerate layers with consecutive integers. Adjacent layers can have the same zIndex property values.
These are valid ways of accessing layer objects:
document.layerName
document.layers[index]
document.layers["layerName"]
// example of using layers property to access nested layers:
document.layers["parentlayer"].layers["childlayer"]
Elements of a layers array are JavaScript objects that cannot be set by assignment, though their properties can be set. For example, the statement
document.layers[0]="music"
is invalid (and ignored) because it attempts to alter the layers array. However, the properties of the objects in the array readable and some are writable. For example, the statement
document.layers["suspect1"].left = 100;
is valid. This sets the layer's horizontal position to 100. The following example sets the background color to blue for the layer bluehouse which is nested in the layer houses.
document.layers["houses"].layers["bluehouse"].bgColor="blue";
linkColor
A string specifying the color of the document hyperlinks.
	Property of
	document

Description
The linkColor property is expressed as a hexadecimal RGB triplet or as one of the string literals listed in the JavaScript Guide. This property is the JavaScript reflection of the LINK attribute of the BODY tag. The default value of this property is set by the user with the preferences dialog box. You cannot set this property after the HTML source has been through layout.
If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".
Examples
The following example sets the color of document links to aqua using a string literal:
document.linkColor="aqua"
The following example sets the color of document links to aqua using a hexadecimal triplet:
document.linkColor="00FFFF"
See also
document.alinkColor, document.bgColor, document.fgColor, document.vlinkColor
links
An array of objects corresponding to Area and Link objects in source order.
	Property of
	document

	Read-only

Description
You can refer to the Area and Link objects in your code by using the links array. This array contains an entry for each Area (<AREA HREF="..."> tag) and Link (tag) object in a document in source order. It also contains links created with the link method. For example, if a document contains three links, you can refer to them as:
document.links[0]
document.links[1]
document.links[2]
plugins
An array of objects corresponding to Plugin objects in source order.
	Property of
	document

	Read-only

You can refer to the Plugin objects in your code by using the plugins array. This array contains an entry for each Plugin object in a document in source order. For example, if a document contains three plugins, you can refer to them as:
document.plugins[0]
document.plugins[1]
document.plugins[2]
referrer
Specifies the URL of the calling document when a user clicks a link.
	Property of
	document

	Read-only

Description
When a user navigates to a destination document by clicking a Link object on a source document, the referrer property contains the URL of the source document.
referrer is empty if the user typed a URL in the Location box, or used some other means to get to the current URL. referrer is also empty if the server does not provide environment variable information.
Examples
In the following example, the getReferrer function is called from the destination document. It returns the URL of the source document.
function getReferrer() {
 return document.referrer
}
title
A string representing the title of a document.
	Property of
	document

	Read-only

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The title property is a reflection of the value specified between the TITLE start and end tags. If a document does not have a title, the title property is null.
Examples
In the following example, the value of the title property is assigned to a variable called docTitle:
var newWindow = window.open("http://home.netscape.com")
var docTitle = newWindow.document.title
URL
A string specifying the complete URL of the document.
	Property of
	document

	Read-only

Description
URL is a string-valued property containing the full URL of the document. It usually matches what window.location.href is set to when you load the document, but redirection may change location.href.
Examples
The following example displays the URL of the current document:
document.write("The current URL is " + document.URL)
See also
Location.href
vlinkColor
A string specifying the color of visited links.
	Property of
	document

Description
The vlinkColor property is expressed as a hexadecimal RGB triplet or as one of the string literals listed in the JavaScript Guide. This property is the JavaScript reflection of the VLINK attribute of the BODY tag. The default value of this property is set by the user with the preferences dialog box. You cannot set this property after the HTML source has been through layout.
If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".
Examples
The following example sets the color of visited links to aqua using a string literal:
document.vlinkColor="aqua"
The following example sets the color of active links to aqua using a hexadecimal triplet:
document.vlinkColor="00FFFF"
See also
document.alinkColor, document.bgColor, document.fgColor, document.linkColor

Methods
captureEvents
Sets the document to capture all events of the specified type.
	Method of
	document

Syntax
captureEvents(eventType)
Parameters
	eventType
	The type of event to be captured. The available event types are listed with the event object.

Description
When a window with frames wants to capture events in pages loaded from different locations (servers), you need to use Window.captureEvents in a signed script and precede it with Window.enableExternalCapture. For more information and an example, see Window.enableExternalCapture.
captureEvents works in tandem with releaseEvents, routeEvent, and handleEvent. For more information, see "Events in Navigator 4.0".
close
Closes an output stream and forces data sent to layout to display.
	Method of
	document

Syntax
close()
Parameters
None.
Description
The close method closes a stream opened with the document.open method. If the stream was opened to layout, the close method forces the content of the stream to display. Font style tags, such as BIG and CENTER, automatically flush a layout stream.
The close method also stops the "meteor shower" in the Netscape icon and displays Document: Done in the status bar.
Examples
The following function calls document.close to close a stream that was opened with document.open. The document.close method forces the content of the stream to display in the window.
function windowWriter1() {
 var myString = "Hello, world!"
 msgWindow.document.open()
 msgWindow.document.write(myString + "<P>")
 msgWindow.document.close()
}
See also
document.open, document.write, document.writeln
getSelection
Returns a string containing the text of the current selection.
	Method of
	document

Syntax
getSelection()
Description
This method works only on the current document.
Security
You cannot determine selected areas in another window.
Examples
If you have a form with the following code and you click on the button, JavaScript displays an alert box containing the currently selected text from the window containing the button:
<INPUT TYPE="BUTTON" NAME="getstring"
 VALUE="Show highlighted text (if any)"
 onClick="alert('You have selected:\n'+document.getSelection());">
handleEvent
Invokes the handler for the specified event.
	Method of
	document

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the specified object has an event handler.

Description
open
Opens a stream to collect the output of write or writeln methods.
	Method of
	document

Syntax
open(mimeType, replace)
Parameters
	mimeType
	(Optional) A string specifying the type of document to which you are writing. If you do not specify mimeType, text/html is the default.

	replace
	(Optional) The string "replace". If you supply this parameter, mimeType must be "text/html". Causes the new document to reuse the history entry that the previous document used.

Description
Sample values for mimeType are:
· text/html specifies a document containing ASCII text with HTML formatting.
· text/plain specifies a document containing plain ASCII text with end-of-line characters to delimit displayed lines.
· image/gif specifies a document with encoded bytes constituting a GIF header and pixel data.
· image/jpeg specifies a document with encoded bytes constituting a JPEG header and pixel data.
· image/x-bitmap specifies a document with encoded bytes constituting a bitmap header and pixel data.
· plugIn loads the specified plug-in and uses it as the destination for write and writeln methods. For example, "x-world/vrml" loads the VR Scout VRML plug-in from Chaco Communications, and "application/x-director" loads the Macromedia Shockwave plug-in. Plug-in MIME types are only valid if the user has installed the required plug-in software.
The open method opens a stream to collect the output of write or writeln methods. If the mimeType is text or image, the stream is opened to layout; otherwise, the stream is opened to a plug-in. If a document exists in the target window, the open method clears it.
End the stream by using the document.close method. The close method causes text or images that were sent to layout to display. After using document.close, call document.open again when you want to begin another output stream.
In Navigator 3.0 and later, document.open or document.open("text/html") clears the current document if it has finished loading. This is because this type of open call writes a default <BASE HREF=> tag so you can generate relative URLs based on the generating script's document base.
The "replace" keyword causes the new document to reuse the history entry that the previous document used. When you specify "replace" while opening a document, the target window's history length is not incremented even after you write and close.
"replace" is typically used on a window that has a blank document or an "about:blank" URL. After "replace" is specified, the write method typically generates HTML for the window, replacing the history entry for the blank URL. Take care when using generated HTML on a window with a blank URL. If you do not specify "replace", the generated HTML has its own history entry, and the user can press the Back button and back up until the frame is empty.
After document.open("text/html","replace") executes, history.current for the target window is the URL of document that executed document.open.
Examples
Example 1. The following function calls document.open to open a stream before issuing a write method:
function windowWriter1() {
 var myString = "Hello, world!"
 msgWindow.document.open()
 msgWindow.document.write("<P>" + myString)
 msgWindow.document.close()
}
Example 2. The following function calls document.open with the "replace" keyword to open a stream before issuing write methods. The HTML code in the write methods is written to msgWindow, replacing the current history entry. The history length of msgWindow is not incremented.
function windowWriter2() {
 var myString = "Hello, world!"
 msgWindow.document.open("text/html","replace")
 msgWindow.document.write("<P>" + myString)
 msgWindow.document.write("<P>history.length is " +
 msgWindow.history.length)
 msgWindow.document.close()
}
The following code creates the msgWindow window and calls the function:
msgWindow=window.open('','',
 'toolbar=yes,scrollbars=yes,width=400,height=300')
windowWriter2()
Example 3. In the following example, the probePlugIn function determines whether a user has the Shockwave plug-in installed:
function probePlugIn(mimeType) {
 var havePlugIn = false
 var tiny = window.open("", "teensy", "width=1,height=1")
 if (tiny != null) {
 if (tiny.document.open(mimeType) != null)
 havePlugIn = true
 tiny.close()
 }
 return havePlugIn
}
var haveShockwavePlugIn = probePlugIn("application/x-director")
See also
document.close, document.write, document.writeln, Location.reload, Location.replace
releaseEvents
Sets the document to release captured events of the specified type, sending the event to objects further along the event hierarchy.
	Method of
	document

Note
If the original target of the event is a window, the window receives the event even if it is set to release that type of event.
Syntax
releaseEvents(eventType)
Parameters
	eventType
	Type of event to be captured.

Description
releaseEvents works in tandem with captureEvents, routeEvent, and handleEvent. For more information, see "Events in Navigator 4.0".
routeEvent
Passes a captured event along the normal event hierarchy.
	Method of
	document

Syntax
routeEvent(event)
Parameters
	event
	Name of the event to be routed.

Description
If a subobject (document or layer) is also capturing the event, the event is sent to that object. Otherwise, it is sent to its original target.
routeEvent works in tandem with captureEvents, releaseEvents, and handleEvent. For more information, see "Events in Navigator 4.0".
write
Writes one or more HTML expressions to a document in the specified window.
	Method of
	document

Syntax
document.write(expr1, ...,exprN)
Parameters
	expr1, ... exprN
	Any JavaScript expressions.

Description
The write method displays any number of expressions in the document window. You can specify any JavaScript expression with the write method, including numeric, string, or logical expressions.
The write method is the same as the writeln method, except the write method does not append a newline character to the end of the output.
Use the write method within any SCRIPT tag or within an event handler. Event handlers execute after the original document closes, so the write method implicitly opens a new document of mimeType text/html if you do not explicitly issue a document.open method in the event handler.
You can use the write method to generate HTML and JavaScript code. However, the HTML parser reads the generated code as it is being written, so you might have to escape some characters. For example, the following write method generates a comment and writes it to window2:
window2=window.open('','window2')
beginComment="\<!--"
endComment="--\>"
window2.document.write(beginComment)
window2.document.write(" This some text inside a comment. ")
window2.document.write(endComment)
Printing, saving, and viewing generated HTML
In Navigator 3.0 and later, users can print and save generated HTML using the commands on the File menu.
If you choose Document Source or Frame Source from the View menu, the web browser displays the content of the HTML file with the generated HTML. (This is what would be displayed using a wysiwyg: URL.)
If you instead want to view the HTML source showing the scripts which generate HTML (with the document.write and document.writeln methods), do not use the Document Source or Frame Source menu item. In this situation, use the view-source: protocol.
For example, assume the file file://c|/test.html contains this text:
<HTML>
<BODY>
Hello,
<SCRIPT>document.write(" there.")</SCRIPT>
</BODY>
</HTML>
If you load this URL into the web browser, it displays the following:
Hello, there.
If you choose View Document Source, the browser displays:
<HTML>
<BODY>
Hello,
 there.
</BODY>
</HTML>
If you load view-source:file://c|/test.html, the browser displays:
<HTML>
<BODY>
Hello,
<SCRIPT>document.write(" there.")</SCRIPT>
</BODY>
</HTML>
For information on specifying the view-source: protocol in the location object, see the Location object.
Examples
In the following example, the write method takes several arguments, including strings, a numeric, and a variable:
var mystery = "world"
// Displays Hello world testing 123
msgWindow.document.write("Hello ", mystery, " testing ", 123)
In the following example, the write method takes two arguments. The first argument is an assignment expression, and the second argument is a string literal.
//Displays Hello world...
msgWindow.document.write(mystr = "Hello ", "world...")
In the following example, the write method takes a single argument that is a conditional expression. If the value of the variable age is less than 18, the method displays "Minor." If the value of age is greater than or equal to 18, the method displays "Adult."
msgWindow.document.write(status = (age >= 18) ? "Adult" : "Minor")
See also
document.close, document.open, document.writeln
writeln
Writes one or more HTML expressions to a document in the specified window and follows them with a newline character.
	Method of
	document

Syntax
writeln(expr1, ... exprN)

Parameters
	expr1, ... exprN
	Any JavaScript expressions.

Description
The writeln method displays any number of expressions in a document window. You can specify any JavaScript expression, including numeric, string, or logical expressions.
The writeln method is the same as the write method, except the writeln method appends a newline character to the end of the output. HTML ignores the newline character, except within certain tags such as the PRE tag.
Use the writeln method within any SCRIPT tag or within an event handler. Event handlers execute after the original document closes, so the writeln method will implicitly open a new document of mimeType text/html if you do not explicitly issue a document.open method in the event handler.
Examples
All the examples used for the write method are also valid with the writeln method.
Image
An image on an HTML form.
	Client-side object
	

Created by
The Image constructor or the IMG tag.
The JavaScript runtime engine creates an Image object corresponding to each IMG tag in your document. It puts these objects in an array in the document.images property. You access an Image object by indexing this array.
To define an image with the IMG tag, use standard HTML syntax with the addition of JavaScript event handlers. If specify a value for the NAME attribute, you can use that name when indexing the images array.
To define an image with its constructor, use the following syntax:
new Image(width, height)
Parameters
	width
	(Optional) The image width, in pixels.

	height
	(Optional) The image height, in pixels.

Event handlers
· onAbort
· onError
· onKeyDown
· onKeyPress
· onKeyUp
· onLoad
To define an event handler for an Image object created with the Image constructor, set the appropriate property of the object. For example, if you have an Image object named imageName and you want to set one of its event handlers to a function whose name is handlerFunction, use one of the following statements:
imageName.onabort = handlerFunction
imageName.onerror = handlerFunction
imageName.onkeydown = handlerFunction
imageName.onkeypress = handlerFunction
imageName.onkeyup = handlerFunction
imageName.onload = handlerFunction
Image objects do not have onClick, onMouseOut, and onMouseOver event handlers. However, if you define an Area object for the image or place the IMG tag within a Link object, you can use the Area or Link object's event handlers. See Link.
Description
The position and size of an image in a document are set when the document is displayed in the web browser and cannot be changed using JavaScript (the width and height properties are read-only for these objects). You can change which image is displayed by setting the src and lowsrc properties. (See the descriptions of Image.src and Image.lowsrc.)
You can use JavaScript to create an animation with an Image object by repeatedly setting the src property, as shown in Example 4 below. JavaScript animation is slower than GIF animation, because with GIF animation the entire animation is in one file; with JavaScript animation, each frame is in a separate file, and each file must be loaded across the network (host contacted and data transferred).
The primary use for an Image object created with the Image constructor is to load an image from the network (and decode it) before it is actually needed for display. Then when you need to display the image within an existing image cell, you can set the src property of the displayed image to the same value as that used for the previously fetched image, as follows.
myImage = new Image()
myImage.src = "seaotter.gif"
...
document.images[0].src = myImage.src
The resulting image will be obtained from cache, rather than loaded over the network, assuming that sufficient time has elapsed to load and decode the entire image. You can use this technique to create smooth animations, or you could display one of several images based on form input.
Property Summary
	border
	Reflects the BORDER attribute.

	complete
	Boolean value indicating whether the web browser has completed its attempt to load the image.

	height
	Reflects the HEIGHT attribute.

	hspace
	Reflects the HSPACE attribute.

	lowsrc
	Reflects the LOWSRC attribute.

	name
	Reflects the NAME attribute.

	prototype
	Allows the addition of properties to an Image object.

	src
	Reflects the SRC attribute.

	vspace
	Reflects the VSPACE attribute.

	width
	Reflects the WIDTH attribute.

Method Summary
	handleEvent
	Invokes the handler for the specified event.

Examples
Example 1: Create an image with the IMG tag. The following code defines an image using the IMG tag:

The following code refers to the image:
document.aircraft.src='f15e.gif'
When you refer to an image by its name, you must include the form name if the image is on a form. The following code refers to the image if it is on a form:
document.myForm.aircraft.src='f15e.gif'
Example 2: Create an image with the Image constructor. The following example creates an Image object, myImage, that is 70 pixels wide and 50 pixels high. If the source URL, seaotter.gif, does not have dimensions of 70x50 pixels, it is scaled to that size.
myImage = new Image(70, 50)
myImage.src = "seaotter.gif"
If you omit the width and height arguments from the Image constructor, myImage is created with dimensions equal to that of the image named in the source URL.
myImage = new Image()
myImage.src = "seaotter.gif"
Example 3: Display an image based on form input. In the following example, the user selects which image is displayed. The user orders a shirt by filling out a form. The image displayed depends on the shirt color and size that the user chooses. All possible image choices are preloaded to speed response time. When the user clicks the button to order the shirt, the allShirts function displays the images of all the shirts.
<SCRIPT>
shirts = new Array()
shirts[0] = "R-S"
shirts[1] = "R-M"
shirts[2] = "R-L"
shirts[3] = "W-S"
shirts[4] = "W-M"
shirts[5] = "W-L"
shirts[6] = "B-S"
shirts[7] = "B-M"
shirts[8] = "B-L"
doneThis = 0
shirtImg = new Array()
// Preload shirt images
for(idx=0; idx < 9; idx++) {
 shirtImg[idx] = new Image()
 shirtImg[idx].src = "shirt-" + shirts[idx] + ".gif"
}
function changeShirt(form)
{
 shirtColor = form.color.options[form.color.selectedIndex].text
 shirtSize = form.size.options[form.size.selectedIndex].text
 newSrc = "shirt-" + shirtColor.charAt(0) + "-" + shirtSize.charAt(0) + ".gif"
 document.shirt.src = newSrc
}
function allShirts()
{
 document.shirt.src = shirtImg[doneThis].src
 doneThis++
 if(doneThis != 9)setTimeout("allShirts()", 500)
 else doneThis = 0
 return
}
</SCRIPT>
Netscape Polo Shirts!
<TABLE CELLSPACING=20 BORDER=0>
<TR>
<TD></TD>
<TD>
<FORM>
Color
<SELECT SIZE=3 NAME="color" onChange="changeShirt(this.form)">
<OPTION> Red
<OPTION SELECTED> White
<OPTION> Blue
</SELECT>
<P>
Size
<SELECT SIZE=3 NAME="size" onChange="changeShirt(this.form)">
<OPTION> Small
<OPTION> Medium
<OPTION SELECTED> Large
</SELECT>
<P><INPUT type="button" name="buy" value="Buy This Shirt!"
 onClick="allShirts()">
</FORM>
</TD>
</TR>
</TABLE>
Example 4: JavaScript animation. The following example uses JavaScript to create an animation with an Image object by repeatedly changing the value the src property. The script begins by preloading the 10 images that make up the animation (image1.gif, image2.gif, image3.gif, and so on). When the Image object is placed on the document with the IMG tag, image1.gif is displayed and the onLoad event handler starts the animation by calling the animate function. Notice that the animate function does not call itself after changing the src property of the Image object. This is because when the src property changes, the image's onLoad event handler is triggered and the animate function is called.
<SCRIPT>
delay = 100
imageNum = 1
// Preload animation images
theImages = new Array()
for(i = 1; i < 11; i++) {
 theImages[i] = new Image()
 theImages[i].src = "image" + i + ".gif"
}
function animate() {
 document.animation.src = theImages[imageNum].src
 imageNum++
 if(imageNum > 10) {
 imageNum = 1
 }
}
function slower() {
 delay+=10
 if(delay > 4000) delay = 4000
}
function faster() {
 delay-=10
 if(delay < 0) delay = 0
}
</SCRIPT>
<BODY BGCOLOR="white">
<IMG NAME="animation" SRC="image1.gif" ALT="[Animation]"
 onLoad="setTimeout('animate()', delay)">
<FORM>
 <INPUT TYPE="button" Value="Slower" onClick="slower()">
 <INPUT TYPE="button" Value="Faster" onClick="faster()">
</FORM>
</BODY>
See also the examples for the onAbort, onError, and onLoad event handlers.
See also
Link, onClick, onMouseOut, onMouseOver
Properties
border
A string specifying the width, in pixels, of an image border.
	Property of
	Image

	Read-only
	

Description
The border property reflects the BORDER attribute of the IMG tag. For images created with the Image constructor, the value of the border property is 0.
Examples
The following function displays the value of an image's border property if the value is not 0.
function checkBorder(theImage) {
 if (theImage.border==0) {
 alert('The image has no border!')
 }
 else alert('The image's border is ' + theImage.border)
}
See also
Image.height, Image.hspace, Image.vspace, Image.width
complete
A boolean value that indicates whether the web browser has completed its attempt to load an image.
	Property of
	Image

	Read-only
	

Examples
The following example displays an image and three radio buttons. The user can click the radio buttons to choose which image is displayed. Clicking another button lets the user see the current value of the complete property.
Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image1" CHECKED
 onClick="document.images[0].src='f15e.gif'">F-15 Eagle

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"
 onClick="document.images[0].src='f15e2.gif'">F-15 Eagle 2

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"
 onClick="document.images[0].src='ah64.gif'">AH-64 Apache

<INPUT TYPE="button" VALUE="Is the image completely loaded?"
 onClick="alert('The value of the complete property is '
 + document.images[0].complete)">

See also
Image.lowsrc, Image.src
height
A string specifying the height of an image in pixels.
	Property of
	Image

	Read-only
	

Description
The height property reflects the HEIGHT attribute of the IMG tag. For images created with the Image constructor, the value of the height property is the actual, not the displayed, height of the image.
Examples
The following function displays the values of an image's height, width, hspace, and vspace properties.
function showImageSize(theImage) {
 alert('height=' + theImage.height+
 '; width=' + theImage.width +
 '; hspace=' + theImage.hspace +
 '; vspace=' + theImage.vspace)
}
See also
Image.border, Image.hspace, Image.vspace, Image.width
hspace
A string specifying a margin in pixels between the left and right edges of an image and the surrounding text.
	Property of
	Image

	Read-only
	

Description
The hspace property reflects the HSPACE attribute of the IMG tag. For images created with the Image constructor, the value of the hspace property is 0.
Examples
See the examples for the height property.
See also
Image.border, Image.height, Image.vspace, Image.width
lowsrc
A string specifying the URL of a low-resolution version of an image to be displayed in a document.
	Property of
	Image

Description
The lowsrc property initially reflects the LOWSRC attribute of the IMG tag. The web browser loads the smaller image specified by lowsrc and then replaces it with the larger image specified by the src property. You can change the lowsrc property at any time.
Examples
See the examples for the src property.
See also
Image.complete, Image.src

name
A string specifying the name of an object.
	Property of
	Image

	Read-only
	

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
Represents the value of the NAME attribute. For images created with the Image constructor, the value of the name property is null.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
In the following example, the first statement creates a window called netscapeWin. The second statement displays the value "netscapeHomePage" in the Alert dialog box, because "netscapeHomePage" is the value of the windowName argument of netscapeWin.
netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)
prototype
Represents the prototype for this class. You can use the prototype to add properties or methods to all instances of a class. For more information, see Function.prototype.
	Property of
	Image

src
A string specifying the URL of an image to be displayed in a document.
	Property of
	Image

Description
The src property initially reflects the SRC attribute of the IMG tag. Setting the src property begins loading the new URL into the image area (and aborts the transfer of any image data that is already loading into the same area). Therefore, if you plan to alter the lowsrc property, you should do so before setting the src property.
If the URL in the src property refers to an image that is not the same size as the image cell it is loaded into, the source image is scaled to fit.
When you change the src property of a displayed image, the new image you specify is displayed in the area defined for the original image. For example, suppose an Image object originally displays the file beluga.gif:

If you set myImage.src='seaotter.gif', the image seaotter.gif is scaled to fit in the same space originally used by beluga.gif, even if seaotter.gif is not the same size as beluga.gif.
You can change the src property at any time.
Examples
The following example displays an image and three radio buttons. The user can click the radio buttons to choose which image is displayed. Each image also uses the lowsrc property to display a low-resolution image.
<SCRIPT>
function displayImage(lowRes,highRes) {
 document.images[0].lowsrc=lowRes
 document.images[0].src=highRes
}
</SCRIPT>
<FORM NAME="imageForm">
Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image1" CHECKED
 onClick="displayImage('f15el.gif','f15e.gif')">F-15 Eagle

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"
 onClick="displayImage('f15e2l.gif','f15e2.gif')">F-15 Eagle 2

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"
 onClick="displayImage('ah64l.gif','ah64.gif')">AH-64 Apache

</FORM>
See also
Image.complete, Image.lowsrc
vspace
A string specifying a margin in pixels between the top and bottom edges of an image and the surrounding text.
	Property of
	Image

	Read-only
	

Description
The vspace property reflects the VSPACE attribute of the IMG tag. For images created with the Image constructor, the value of the vspace property is 0.
Examples
See the examples for the height property.
See also
Image.border, Image.height, Image.hspace, Image.width
width
A string specifying the width of an image in pixels.
	Property of
	Image

	Read-only
	

Description
The width property reflects the WIDTH attribute of the IMG tag. For images created with the Image constructor, the value of the width property is the actual, not the displayed, width of the image.
Examples
See the examples for the height property.
See also
Image.border, Image.height, Image.hspace, Image.vspace
Methods
handleEvent
Invokes the handler for the specified event.
	Method of
	Image

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the specified object has an event handler.

Layer
Corresponds to a layer in an HTML page and provides a means for manipulating that layer.
	Client-side object
	

Created by
The HTML LAYER or ILAYER tag, or using cascading style sheet syntax. The JavaScript runtime engine creates a Layer object corresponding to each layer in your document. It puts these objects in an array in the document.layers property. You access a Layer object by indexing this array.
To define a layer, use standard HTML syntax. If you specify the ID attribute, you can use the value of that attribute to index into the layers array.
For a complete description of layers, see Dynamic HTML in Netscape Communicator1.
Some layer properties can be directly modified by assignment; for example, "mylayer.visibility = hide". A layer object also has methods that can affect these properties.
Event handlers
· onMouseOver
· onMouseOut
· onLoad
· onFocus
· onBlur
Property Summary
	above
	The layer object above this one in z-order, among all layers in the document or the enclosing window object if this layer is topmost.

	background
	The image to use as the background for the layer's canvas.

	bgColor
	The color to use as a solid background color for the layer's canvas.

	below
	The layer object below this one in z-order, among all layers in the document or null if this layer is at the bottom.

	clip.bottom
	The bottom edge of the clipping rectangle (the part of the layer that is visible.)

	clip.height
	The height of the clipping rectangle (the part of the layer that is visible.)

	clip.left
	The left edge of the clipping rectangle (the part of the layer that is visible.)

	clip.right
	The right edge of the clipping rectangle (the part of the layer that is visible.)

	clip.top
	The top edge of the clipping rectangle (the part of the layer that is visible.)

	clip.width
	The width of the clipping rectangle (the part of the layer that is visible.)

	document
	The layer's associated document.

	left
	The horizontal position of the layer's left edge, in pixels, relative to the origin of its parent layer.

	name
	A string specifying the name assigned to the layer through the ID attribute in the LAYER tag.

	pageX
	The horizontal position of the layer, in pixels, relative to the page.

	page y
	The vertical position of the layer, in pixels, relative to the page.

	parentLayer
	The layer object that contains this layer, or the enclosing window object if this layer is not nested in another layer.

	siblingAbove
	The layer object above this one in z-order, among all layers that share the same parent layer, or null if the layer has no sibling above.

	siblingBelow
	The layer object below this one in z-order, among all layers that share the same parent layer, or null if layer is at the bottom.

	src
	A string specifying the URL of the layer's content.

	top
	The vertical position of the layer's top edge, in pixels, relative to the origin of its parent layer.

	visibility
	Whether or not the layer is visible.

	zIndex
	The relative z-order of this layer with respect to its siblings.

Method Summary
	captureEvents
	Sets the window or document to capture all events of the specified type.

	handleEvent
	Invokes the handler for the specified event.

	load
	Changes the source of a layer to the contents of the specified file, and simultaneously changes the width at which the layer's HTML contents will be wrapped.

	moveAbove
	Stacks this layer above the layer specified in the argument, without changing either layer's horizontal or vertical position.

	moveBelow
	Stacks this layer below the specified layer, without changing either layer's horizontal or vertical position.

	moveBy
	Changes the layer position by applying the specified deltas, measured in pixels.

	moveTo
	Moves the top-left corner of the window to the specified screen coordinates.

	moveToAbsolute
	Changes the layer position to the specified pixel coordinates within the page (instead of the containing layer.)

	releaseEvents
	Sets the layer to release captured events of the specified type, sending the event to objects further along the event hierarchy.

	resizeBy
	Resizes the layer by the specified height and width values (in pixels).

	resizeTo
	Resizes the layer to have the specified height and width values (in pixels).

	routeEvent
	Passes a captured event along the normal event hierarchy.

Note
Just as in the case of a document, if you want to define mouse click response for a layer, you must capture onMouseDown and onMouseUp events at the level of the layer and process them as you want.
See "Events in Navigator 4.0" for more details about capturing events.
If an event occurs in a point where multiple layers overlap, the topmost layer gets the event, even if it is transparent. However, if a layer is hidden, it does not get events.
Properties
above
The layer object above this one in z-order, among all layers in the document or the enclosing window object if this layer is topmost.
	Property of
	Layer

	Read-only
	

background
The image to use as the background for the layer's canvas (which is the part of the layer within the clip rectangle).
	Property of
	Layer

Description
Each layer has a background property, whose value is an image object, whose src attribute is a URL that indicates the image to use to provide a tiled backdrop. The value is null if the layer has no backdrop. For example:
layer.background.src = "fishbg.gif";
bgColor
A string specifying the color to use as a solid background color for the layer's canvas (the part of the layer within the clip rectangle).
	Property of
	Layer

Description
The bgColor property is expressed as a hexadecimal RGB triplet or as one of the string literals listed in the JavaScript Guide. This property is the JavaScript reflection of the BGCOLOR attribute of the BODY tag.
You can set the bgColor property at any time.
If you express the color as a hexadecimal RGB triplet, you must use the format rrggbb. For example, the hexadecimal RGB values for salmon are red=FA, green=80, and blue=72, so the RGB triplet for salmon is "FA8072".
Examples
The following example sets the background color of the myLayer layer's canvas to aqua using a string literal:
myLayer.bgColor="aqua"
The following example sets the background color of the myLayer layer's canvas to aqua using a hexadecimal triplet:
myLayer.bgColor="00FFFF"
See also
Layer.bgColor
below
The layer object below this one in z-order, among all layers in the document or null if this layer is at the bottom.
	Property of
	Layer

	Read-only
	

clip.bottom
The bottom edge of the clipping rectangle (the part of the layer that is visible.) Any part of a layer that is outside the clipping rectangle is not displayed.
	Property of
	Layer

clip.height
The height of the clipping rectangle (the part of the layer that is visible.) Any part of a layer that is outside the clipping rectangle is not displayed.
	Property of
	Layer

clip.left
The left edge of the clipping rectangle (the part of the layer that is visible.) Any part of a layer that is outside the clipping rectangle is not displayed.
	Property of
	Layer

clip.right
The right edge of the clipping rectangle (the part of the layer that is visible.) Any part of a layer that is outside the clipping rectangle is not displayed.
	Property of
	Layer

clip.top
The top edge of the clipping rectangle (the part of the layer that is visible.) Any part of a layer that is outside the clipping rectangle is not displayed.
	Property of
	Layer

clip.width
The width of the clipping rectangle (the part of the layer that is visible.) Any part of a layer that is outside the clipping rectangle is not displayed.
	Property of
	Layer

document
The layer's associated document.
	Property of
	Layer

	Read-only
	

Description
Each layer object contains its own document object. This object can be used to access the images, applets, embeds, links, anchors and layers that are contained within the layer. Methods of the document object can also be invoked to change the contents of the layer.
left
The horizontal position of the layer's left edge, in pixels, relative to the origin of its parent layer.
	Property of
	Layer

name
A string specifying the name assigned to the layer through the ID attribute in the LAYER tag.
	Property of
	Layer

	Read-only
	

pageX
The horizontal position of the layer, in pixels, relative to the page.
	Property of
	Layer

pageY
The vertical position of the layer, in pixels, relative to the page.
	Property of
	Layer

parentLayer
The layer object that contains this layer, or the enclosing window object if this layer is not nested in another layer.
	Property of
	Layer

	Read-only
	

siblingAbove
The layer object above this one in z-order, among all layers that share the same parent layer or null if the layer has no sibling above.
	Property of
	Layer

	Read-only
	

siblingBelow
The layer object below this one in z-order, among all layers that share the same parent layer or null if layer is at the bottom.
	Property of
	Layer

	Read-only
	

src
A URL string specifying the source of the layer's content. Corresponds to the SRC attribute.
	Property of
	Layer

top
The top property is a synonym for the topmost Navigator window, which is a document window or web browser window.
	Property of
	Layer

	Read-only
	

Description
The top property refers to the topmost window that contains frames or nested framesets. Use the top property to refer to this ancestor window.
The value of the top property is
<object objectReference>
where objectReference is an internal reference.
Examples
The statement top.close() closes the topmost ancestor window.
The statement top.length specifies the number of frames contained within the topmost ancestor window. When the topmost ancestor is defined as follows, top.length returns three:
<FRAMESET COLS="30%,40%,30%">
<FRAME SRC=child1.htm NAME="childFrame1">
<FRAME SRC=child2.htm NAME="childFrame2">
<FRAME SRC=child3.htm NAME="childFrame3">
</FRAMESET>
visibility
Whether or not the layer is visible.
	Property of
	Layer

Description
A value of show means show the layer; hide means hide the layer; inherit means inherit the visibility of the parent layer.
zIndex
The relative z-order of this layer with respect to its siblings.
	Method of
	Layer

Description
Sibling layers with lower numbered z-indexes are stacked underneath this layer. The value of zIndex must be 0 or a positive integer.
Methods
captureEvents
Sets the window or document to capture all events of the specified type.
	Method of
	Layer

Syntax
captureEvents(eventType)
Parameters
	eventType
	Type of event to be captured. Available event types are listed with event.

Description
When a window with frames wants to capture events in pages loaded from different locations (servers), you need to use captureEvents in a signed script and precede it with enableExternalCapture. For more information and an example, see enableExternalCapture.
captureEvents works in tandem with releaseEvents, routeEvent, and handleEvent. For more information, see "Events in Navigator 4.0".
handleEvent
Invokes the handler for the specified event.
	Method of
	Layer

Syntax
handleEvent(event)
Parameters
	event
	Name of an event for which the specified object has an event handler.

Description
handleEvent works in tandem with captureEvents, releaseEvents, and routeEvent. For more information, see "Events in Navigator 4.0".
load
Changes the source of a layer to the contents of the specified file and simultaneously changes the width at which the layer's HTML contents are wrapped.
	Method of
	Layer

Syntax
load(sourcestring, width)
Parameters
	sourcestring
	A string indicating the external file name.

	width
	The width of the layer as a pixel value.

moveAbove
Stacks this layer above the layer specified in the argument, without changing either layer's horizontal or vertical position. After re-stacking, both layers will share the same parent layer.
	Method of
	Layer

Syntax
moveAbove(aLayer)
Parameters
	aLayer
	The layer above which to move the current layer.

moveBelow
Stacks this layer below the specified layer, without changing either layer's horizontal or vertical position. After re-stacking, both layers will share the same parent layer.
	Method of
	Layer

Syntax
moveBelow(aLayer)
Parameters
	aLayer
	The layer below which to move the current layer.

moveBy
Changes the layer position by applying the specified deltas, measured in pixels.
	Method of
	Layer

Syntax
moveBy(horizontal, vertical)
Parameters
	horizontal
	The number of pixels by which to move the layer horizontally.

	vertical
	The number of pixels by which to move the layer vertically.

moveTo
Moves the top-left corner of the window to the specified screen coordinates.
	Method of
	Layer

Syntax
moveTo(x-coordinate, y-coordinate)
Parameters
	x-coordinate
	An integer representing the top edge of the window in screen coordinates.

	y-coordinate
	An integer representing the left edge of the window in screen coordinates.

Security
To move a window offscreen, call the moveTo method in a signed script. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Description
Changes the layer position to the specified pixel coordinates within the containing layer. For ILayers, moves the layer relative to the natural inflow position of the layer.
See also
Layer.moveBy
moveToAbsolute
Changes the layer position to the specified pixel coordinates within the page (instead of the containing layer.)
	Method of
	Layer

Syntax
moveToAbsolute(x, y)
Parameters
	x
	An integer representing the top edge of the window in pixel coordinates.

	y
	An integer representing the left edge of the window in pixel coordinates.

Description
This method is equivalent to setting both the pageX and pageY properties of the layer object.
releaseEvents
Sets the window or document to release captured events of the specified type, sending the event to objects further along the event hierarchy.
	Method of
	Layer

Syntax
releaseEvents(eventType)
Parameters
	eventType
	Type of event to be captured.

Description
If the original target of the event is a window, the window receives the event even if it is set to release that type of event. releaseEvents works in tandem with captureEvents, routeEvent, and handleEvent. For more information, see "Events in Navigator 4.0".
resizeBy
Resizes the layer by the specified height and width values (in pixels).
	Method of
	Layer

Syntax
resizeBy(width, height)
Parameters
	width
	The number of pixels by which to resize the layer horizontally.

	height
	The number of pixels by which to resize the layer vertically.

Description
This does not layout any HTML contained in the layer again. Instead, the layer contents may be clipped by the new boundaries of the layer. This method has the same effect as adding width and height to clip.width and clip.height.
resizeTo
Resizes the layer to have the specified height and width values (in pixels).
	Method of
	Layer

Description
This does not layout any HTML contained in the layer again. Instead, the layer contents may be clipped by the new boundaries of the layer.
Syntax
resizeBy(width, height)
Parameters
	width
	An integer representing the layer's width in pixels.

	height
	An integer representing the layer's height in pixels.

Description
This method has the same effect setting clip.width and clip.height.
routeEvent
Passes a captured event along the normal event hierarchy.
	Method of
	Layer

Syntax
routeEvent(event)
Parameters
	event
	The event to route.

Description
If a subobject (document or layer) is also capturing the event, the event is sent to that object. Otherwise, it is sent to its original target.
routeEvent works in tandem with captureEvents, releaseEvents, and handleEvent.
Link
A piece of text, an image, or an area of an image identified as a hypertext link. When the user clicks the link text, image, or area, the link hypertext reference is loaded into its target window. Area objects are a type of Link object.
	Client-side object

Created by
By using the HTML A or AREA tag or by a call to the String.link method. The JavaScript runtime engine creates a Link object corresponding to each A and AREA tag in your document that supplies the HREF attribute. It puts these objects as an array in the document.links property. You access a Link object by indexing this array.
To define a link with the String.link method:
theString.link(hrefAttribute)
where:
	theString
	A String object.

	hrefAttribute
	Any string that specifies the HREF attribute of the A tag; it should be a valid URL (relative or absolute).

To define a link with the A or MAP tag, use standard HTML syntax with the addition of JavaScript event handlers. If you're going to use the onMouseOut or onMouseOver event handlers, you must supply a value for the HREF attribute.
Event handlers
Area objects have the following event handlers:
· onDblClick
· onMouseOut
· onMouseOver
Link objects have the following event handlers:
· onClick
· onDblClick
· onKeyDown
· onKeyPress
· onKeyUp
· onMouseDown
· onMouseOut
· onMouseUp
· onMouseOver
Description
Each Link object is a location object and has the same properties as a location object.
If a Link object is also an Anchor object, the object has entries in both the anchors and links arrays.
When a user clicks a Link object and navigates to the destination document (specified by HREF="locationOrURL"), the destination document's referrer property contains the URL of the source document. Evaluate the referrer property from the destination document.
You can use a Link object to execute a JavaScript function rather than link to a hypertext reference by specifying the javascript: URL protocol for the link's HREF attribute. You might want to do this if the link surrounds an Image object and you want to execute JavaScript code when the image is clicked. Or you might want to use a link instead of a button to execute JavaScript code.
For example, when a user clicks the following links, the slower and faster functions execute:
Slower
Faster
You can use a Link object to do nothing rather than link to a hypertext reference by specifying the javascript:void(0) URL protocol for the link's HREF attribute. You might want to do this if the link surrounds an Image object and you want to use the link's event handlers with the image. When a user clicks the following link or image, nothing happens:
Click here to do nothing

Property Summary
	hash
	Specifies an anchor name in the URL.

	host
	Specifies the host and domain name, or IP address, of a network host.

	hostname
	Specifies the host:port portion of the URL.

	href
	Specifies the entire URL.

	pathname
	Specifies the URL-path portion of the URL.

	port
	Specifies the communications port that the server uses.

	protocol
	Specifies the beginning of the URL, including the colon.

	search
	Specifies a query string.

	target
	Reflects the TARGET attribute.

	text
	A string containing the content of the corresponding A tag.

Method Summary
	handleEvent
	Invokes the handler for the specified event.

Examples
Example 1. The following example creates a hypertext link to an anchor named javascript_intro:
Introduction to JavaScript
Example 2. The following example creates a hypertext link to an anchor named numbers in the file doc3.html in the window window2. If window2 does not exist, it is created.
Numbers
Example 3. The following example takes the user back x entries in the history list:
Click here
Example 4. The following example creates a hypertext link to a URL. The user can use the set of radio buttons to choose between three URLs. The link's onClick event handler sets the URL (the link's href property) based on the selected radio button. The link also has an onMouseOver event handler that changes the window's status property. As the example shows, you must return true to set the window.status property in the onMouseOver event handler.
<SCRIPT>
var destHREF="http://home.netscape.com/"
</SCRIPT>
<FORM NAME="form1">
Choose a destination from the following list, then click "Click me" below.

<INPUT TYPE="radio" NAME="destination" VALUE="netscape"
 onClick="destHREF='http://home.netscape.com/'"> Netscape home page

<INPUT TYPE="radio" NAME="destination" VALUE="sun"
 onClick="destHREF='http://www.sun.com/'"> Sun home page

<INPUT TYPE="radio" NAME="destination" VALUE="rfc1867"
 onClick="destHREF='http://www.ics.uci.edu/pub/ietf/html/rfc1867.txt'"> RFC 1867
<P><A HREF=""
 onMouseOver="window.status='Click this if you dare!'; return true"
 onClick="this.href=destHREF">
 Click me
</FORM>
Example 5: links array. In the following example, the linkGetter function uses the links array to display the value of each link in the current document. The example also defines several links and a button for running linkGetter.
function linkGetter() {
 msgWindow=window.open("","msg","width=400,height=400")
 msgWindow.document.write("links.length is " +
 document.links.length + "
")
 for (var i = 0; i < document.links.length; i++) {
 msgWindow.document.write(document.links[i] + "
")
 }
}
Netscape Home Page
China Adoptions
Bad Dog Chronicles
Lab Rescue
<P>
<INPUT TYPE="button" VALUE="Display links"
 onClick="linkGetter()">
Example 6: Refer to Area object with links array. The following code refers to the href property of the first Area object shown in Example 1.
document.links[0].href
Example 7: Area object with onMouseOver and onMouseOut event handlers. The following example displays an image, globe.gif. The image uses an image map that defines areas for the top half and the bottom half of the image. The onMouseOver and onMouseOut event handlers display different status bar messages depending on whether the mouse passes over or leaves the top half or bottom half of the image. The HREF attribute is required when using the onMouseOver and onMouseOut event handlers, but in this example the image does not need a hypertext link, so the HREF attribute executes javascript:void(0), which does nothing.
<MAP NAME="worldMap">
 <AREA NAME="topWorld" COORDS="0,0,50,25" HREF="javascript:void(0)"
 onMouseOver="self.status='You are on top of the world';return true"
 onMouseOut="self.status='You have left the top of the world';return true">
 <AREA NAME="bottomWorld" COORDS="0,25,50,50" HREF="javascript:void(0)"
 onMouseOver="self.status='You are on the bottom of the world';return true"
 onMouseOut="self.status='You have left the bottom of the world';return true">
</MAP>

Example 8: Simulate an Area object's onClick using the HREF attribute. The following example uses an Area object's HREF attribute to execute a JavaScript function. The image displayed, colors.gif, shows two sample colors. The top half of the image is the color antiquewhite, and the bottom half is white. When the user clicks the top or bottom half of the image, the function setBGColor changes the document's background color to the color shown in the image.
<SCRIPT>
function setBGColor(theColor) {
 document.bgColor=theColor
}
</SCRIPT>
Click the color you want for this document's background color
<MAP NAME="colorMap">
 <AREA NAME="topColor" COORDS="0,0,50,25" HREF="javascript:setBGColor('antiquewhite')">
 <AREA NAME="bottomColor" COORDS="0,25,50,50" HREF="javascript:setBGColor('white')">
</MAP>

See also
Anchor, Image, link
Properties
hash
A string beginning with a hash mark (#) that specifies an anchor name in the URL.
	Property of
	Link

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The hash property specifies a portion of the URL. This property applies to HTTP URLs only.
Be careful using this property. Assume document.links[0] contains:
http://royalairways.com/fish.htm#angel
Then document.links[0].hash returns #angel. Assume you have this code:
hash = document.links[0].hash;
document.links[0].hash = hash;
Now, document.links[0].hash returns ##angel.
This behavior may change in a future release.
You can set the hash property at any time, although it is safer to set the href property to change a location. If the hash that you specify cannot be found in the current location, you get an error.
Setting the hash property navigates to the named anchor without reloading the document. This differs from the way a document is loaded when other link properties are set.
See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html) for complete information about the hash.
See also
Link.host, Link.hostname, Link.href, Link.pathname, Link.port, Link.protocol, Link.search
host
A string specifying the server name, subdomain, and domain name.
	Property of
	Link

	Implemented in
	Navigator 2.0

Description
The host property specifies a portion of a URL. The host property is a substring of the hostname property. The hostname property is the concatenation of the host and port properties, separated by a colon. When the port property is null, the host property is the same as the hostname property.
You can set the host property at any time, although it is safer to set the href property to change a location. If the host that you specify cannot be found in the current location, you get an error.
See also
Link.hash, Link.hostname, Link.href, Link.pathname, Link.port, Link.protocol, Link.search
hostname
A string containing the full hostname of the server, including the server name, subdomain, domain, and port number.
	Property of
	Link

Description
The hostname property specifies a portion of a URL. The hostname property is the concatenation of the host and port properties, separated by a colon. When the port property is 80 (the default), the host property is the same as the hostname property.
You can set the hostname property at any time, although it is safer to set the href property to change a location. If the hostname that you specify cannot be found in the current location, you get an error.
See also
Link.host, Link.hash, Link.href, Link.pathname, Link.port, Link.protocol, Link.search
href
A string specifying the entire URL.
	Property of
	Link

Description
The href property specifies the entire URL. Other link object properties are substrings of the href property.
You can set the href property at any time.
See also
Link.hash, Link.host, Link.hostname, Link.pathname, Link.port, Link.protocol, Link.search
pathname
A string specifying the URL-path portion of the URL.
	Property of
	Link

Description
The pathname property specifies a portion of the URL. The pathname supplies the details of how the specified resource can be accessed.
You can set the pathname property at any time, although it is safer to set the href property to change a location. If the pathname that you specify cannot be found in the current location, you get an error.
See also
Link.host, Link.hostname, Link.hash, Link.href, Link.port, Link.protocol, Link.search
port
A string specifying the communications port that the server uses.
	Property of
	Link

Description
The port property specifies a portion of the URL. The port property is a substring of the hostname property. The hostname property is the concatenation of the host and port properties, separated by a colon. When the port property is 80 (the default), the host property is the same as the hostname property.
You can set the port property at any time, although it is safer to set the href property to change a location. If the port that you specify cannot be found in the current location, you will get an error. If the port property is not specified, it defaults to 80 on the server.
See also
Link.host, Link.hostname, Link.hash, Link.href, Link.pathname, Link.protocol, Link.search
protocol
A string specifying the beginning of the URL, up to and including the first colon.
	Property of
	Link

Description
The protocol property specifies a portion of the URL. The protocol indicates the access method of the URL. For example, the value "http:" specifies HyperText Transfer Protocol, and the value "javascript:" specifies JavaScript code.
You can set the protocol property at any time, although it is safer to set the href property to change a location. If the protocol that you specify cannot be found in the current location, you get an error.
The protocol property represents the scheme name of the URL. See Section 2.1 of RFC 1738
See also
Link.host, Link.hostname, Link.hash, Link.href, Link.pathname, Link.port, Link.search
search
A string beginning with a question mark that specifies any query information in the URL.
	Property of
	Link

Description
The search property specifies a portion of the URL. This property applies to http URLs only.
The search property contains variable and value pairs; each pair is separated by an ampersand. For example, two pairs in a search string could look like the following:
?x=7&y=5
You can set the search property at any time, although it is safer to set the href property to change a location. If the search that you specify cannot be found in the current location, you get an error.
See also
Link.host, Link.hostname, Link.hash, Link.href, Link.pathname, Link.port, Link.protocol
target
A string specifying the name of the window that displays the content of a clicked hypertext link.
	Property of
	Link

Description
The target property initially reflects the TARGET attribute of the A or AREA tags; however, setting target overrides this attribute.
You can set target using a string, if the string represents a window name. The target property cannot be assigned the value of a JavaScript expression or variable.
You can set the target property at any time.
Examples
The following example specifies that responses to the musicInfo form are displayed in the msgWindow window:
document.musicInfo.target="msgWindow"
See also
Form
text
A string containing the content of the corresponding A tag.
	Property of
	Link

Methods
handleEvent
Invokes the handler for the specified event.
	Method of
	Link

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the specified object has an event handler.

Chapter 6
Window
This chapter deals with the Window object and the client-side objects associated with it: Frame, Location, and History.
Table 6.1 summarizes the objects in this chapter.
Table 6.1 Window objects
	Object
	Description

	Frame
	A window that can display multiple, independently scrollable frames on a single screen, each with its own distinct URL.

	History
	Contains an array of information on the URLs that the client has visited within a window.

	Location
	Contains information on the current URL.

	screen
	Contains properties describing the display screen and colors.

	Window
	Represents a browser window or frame. This is the top-level object for each document, Location, and History object group.

Frame
A window can display multiple, independently scrollable frames on a single screen, each with its own distinct URL. These frames are created using the FRAME tag inside a FRAMESET tag. Frames can point to different URLs and be targeted by other URLs, all within the same screen. A series of frames makes up a page. The Frame object is a convenience for thinking about the objects that constitute these frames. However, JavaScript actually represents a frame using a Window object. Every Frame object is a Window object, and has all the methods and properties of a Window object. There are a small number of minor differences between a window that is a frame and a top-level window. See Window for complete information on frames.
	Client-side object

History
Contains an array of information on the URLs that the client has visited within a window. This information is stored in a history list and is accessible through the browser's Go menu.
	Client-side object
	

Created by
History objects are predefined JavaScript objects that you access through the history property of a Window object.
Description
To change a window's current URL without generating a history entry, you can use the Location.replace method. This replaces the current page with a new one without generating a history entry. See Location.replace.
You can refer to the history entries by using the Window.history array. This array contains an entry for each history entry in source order. Each array entry is a string containing a URL. For example, if the history list contains three named entries, these entries are reflected as history[0], history[1], and history[2].
If you access the history array without specifying an array element, the browser returns a string of HTML which displays a table of URLs, each of which is a link.
Property Summary
	current
	Specifies the URL of the current history entry.

	length
	Reflects the number of entries in the history list.

	next
	Specifies the URL of the next history entry.

	previous
	Specifies the URL of the previous history entry.

Method Summary
	back
	Loads the previous URL in the history list.

	forward
	Loads the next URL in the history list.

	go
	Loads a URL from the history list.

Examples
Example 1. The following example goes to the URL the user visited three clicks ago in the current window.
history.go(-3)
Example 2. You can use the history object with a specific window or frame. The following example causes window2 to go back one item in its window (or session) history:
window2.history.back()
Example 3. The following example causes the second frame in a frameset to go back one item:
parent.frames[1].history.back()
Example 4. The following example causes the frame named frame1 in a frameset to go back one item:
parent.frame1.history.back()
Example 5. The following example causes the frame named frame2 in window2 to go back one item:
window2.frame2.history.back()
Example 6. The following code determines whether the first entry in the history array contains the string "NETSCAPE". If it does, the function myFunction is called.
if (history[0].indexOf("NETSCAPE") != -1) {
 myFunction(history[0])
}
Example 7. The following example displays the entire history list:
document.writeln("history is " + history)
This code displays output similar to the following:
history is
Welcome to Netscape http://home.netscape.com/
Sun Microsystems http://www.sun.com/
Royal Airways http://www.supernet.net/~dugbrown/
See also
Location, Location.replace
Properties
current
A string specifying the complete URL of the current history entry.
	Property of
	History

	Read-only
	

Examples
The following example determines whether history.current contains the string "netscape.com". If it does, the function myFunction is called.
if (history.current.indexOf("netscape.com") != -1) {
 myFunction(history.current)
}
See also
History.next, History.previous
length
The number of elements in the history array.
	Property of
	History

	Read-only
	

next
A string specifying the complete URL of the next history entry.
	Property of
	History

	Read-only
	

Description
The next property reflects the URL that would be used if the user chose Forward from the Go menu.
Examples
The following example determines whether history.next contains the string "NETSCAPE.COM". If it does, the function myFunction is called.
if (history.next.indexOf("NETSCAPE.COM") != -1) {
 myFunction(history.next)
}
See also
History.current, History.previous
previous
A string specifying the complete URL of the previous history entry.
	Property of
	History

	Read-only
	

Description
The previous property reflects the URL that would be used if the user chose Back from the Go menu.
Examples
The following example determines whether history.previous contains the string "NETSCAPE.COM". If it does, the function myFunction is called.
if (history.previous.indexOf("NETSCAPE.COM") != -1) {
 myFunction(history.previous)
}
See also
History.current, History.next
Methods
back
Loads the previous URL in the history list.
	Method of
	History

Syntax
back()
Parameters
None
Description
This method performs the same action as a user choosing the Back button in the browser. The back method is the same as history.go(-1).
Examples
The following custom buttons perform the same operation as the browser's Back button:
<P><INPUT TYPE="button" VALUE="< Go Back"
 onClick="history.back()">
<P><INPUT TYPE="button" VALUE="> Go Back"
 onClick="myWindow.back()">
See also
History.forward, History.go
forward
Loads the next URL in the history list.
	Method of
	History

Syntax
forward()
Parameters
None
Description
This method performs the same action as a user choosing the Forward button in the browser. The forward method is the same as history.go(1).
Examples
The following custom buttons perform the same operation as the browser's Forward button:
<P><INPUT TYPE="button" VALUE="< Forward"
 onClick="history.forward()">
<P><INPUT TYPE="button" VALUE="> Forward"
 onClick="myWindow.forward()">
See also
History.back, History.go
go
Loads a URL from the history list.
	Method of
	History

Syntax
go(delta)
go(location)
Parameters
	delta
	An integer representing a relative position in the history list.

	location
	A string representing all or part of a URL in the history list.

Description
The go method navigates to the location in the history list determined by the specified parameter.
If the delta argument is 0, the browser reloads the current page. If it is an integer greater than 0, the go method loads the URL that is that number of entries forward in the history list; otherwise, it loads the URL that is that number of entries backward in the history list.
The location argument is a string. Use location to load the nearest history entry whose URL contains location as a substring. Matching the URL to the location parameter is case-insensitive. Each section of a URL contains different information. See Location for a description of the URL components.
The go method creates a new entry in the history list. To load a URL without creating an entry in the history list, use Location.replace.
Examples
The following button navigates to the nearest history entry that contains the string "home.netscape.com":
<P><INPUT TYPE="button" VALUE="Go"
 onClick="history.go('home.netscape.com')">
The following button navigates to the URL that is three entries backward in the history list:
<P><INPUT TYPE="button" VALUE="Go"
 onClick="history.go(-3)">
Location
Contains information on the current URL.
	Client-side object
	

Created by
Location objects are predefined JavaScript objects that you access through the location property of a Window object:
Description
The location object represents the complete URL associated with a given Window object. Each property of the location object represents a different portion of the URL.
In general, a URL has this form:
protocol//host:port/pathname#hash?search
For example:
http://home.netscape.com/assist/extensions.html#topic1?x=7&y=2
These parts serve the following purposes:
· protocol represents the beginning of the URL, up to and including the first colon.
· host represents the host and domain name, or IP address, of a network host.
· port represents the communications port that the server uses for communications.
· pathname represents the URL-path portion of the URL.
· hash represents an anchor name fragment in the URL, including the hash mark (#). This property applies to HTTP URLs only.
· search represents any query information in the URL, including the question mark (?). This property applies to HTTP URLs only. The search string contains variable and value pairs; each pair is separated by an ampersand (&).
A Location object has a property for each of these parts of the URL. See the individual properties for more information. A Location object has two other properties not shown here:
· href represents a complete URL.
· hostname represents the concatenation host:port.
If you assign a string to the location property of an object, JavaScript creates a location object and assigns that string to its href property. For example, the following two statements are equivalent and set the URL of the current window to the Netscape home page:
window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"
The location object is contained by the window object and is within its scope. If you refer to a location object without specifying a window, the location object represents the current location. If you refer to a location object and specify a window name, as in windowReference.location, the location object represents the location of the specified window.
In event handlers, you must specify window.location instead of simply using location. Due to the scoping of static objects in JavaScript, a call to location without specifying an object name is equivalent to document.location, which is a synonym for document.URL.
Location is not a property of the document object; its equivalent is the document.URL property. The document.location property, which is a synonym for document.URL, will be removed in a future release.
How documents are loaded when location is set
When you set the location object or any of its properties except hash, whether a new document is loaded depends on which version of the browser you are running:
· In Navigator 2.0, setting location does a conditional ("If-modified-since") HTTP GET operation, which returns no data from the server unless the document has been modified since the last version downloaded.
· In Navigator 3.0 and later, the effect of setting location depends on the user's setting for comparing a document to the original over the network. The user interface option for setting this preference differs in browser versions. The user decides whether to check a document in cache every time it is accessed, once per session, or never. The document is reloaded from cache if the user sets never or once per session; the document is reloaded from the server only if the user chooses every time.
Syntax for common URL types
When you specify a URL, you can use standard URL formats and JavaScript statements. Table 6.2 shows the syntax for specifying some of the most common types of URLs.
Table 6.2 URL syntax.
	URL type
	Protocol
	Example

	JavaScript code
	javascript:
	javascript:history.go(-1)

	Navigator source viewer
	view-source:
	view-source:wysiwyg://0/file:/c|/temp/genhtml.html

	Navigator info
	about:
	about:cache

	World Wide Web
	http:
	http://home.netscape.com/

	File
	file:/
	file:///javascript/methods.html

	FTP
	ftp:
	ftp://ftp.mine.com/home/mine

	MailTo
	mailto:
	mailto:info@netscape.com

	Usenet
	news:
	news://news.scruznet.com/comp.lang.javascript

	Gopher
	gopher:
	gopher.myhost.com

The javascript: protocol evaluates the expression after the colon (:), if there is one, and loads a page containing the string value of the expression, unless it is undefined. If the expression evaluates to undefined (by calling a void function, for example javascript:void(0)), no new page loads. Note that loading a new page over your script's page clears the page's variables, functions, and so on.
The view-source: protocol displays HTML code that was generated with JavaScript document.write and document.writeln methods. For information on printing and saving generated HTML, see write.
The about: protocol provides information on Navigator and has the following syntax:
about:
about:cache
about:plugins
· about: by itself is the same as choosing About Communicator from the Navigator Help menu.
· about:cache displays disk-cache statistics.
· about:plugins displays information about plug-ins you have configured. This is the same as choosing About Plug-ins from the Navigator Help menu.
Property Summary
	hash
	Specifies an anchor name in the URL.

	host
	Specifies the host and domain name, or IP address, of a network host.

	hostname
	Specifies the host:port portion of the URL.

	href
	Specifies the entire URL.

	pathname
	Specifies the URL-path portion of the URL.

	port
	Specifies the communications port that the server uses.

	protocol
	Specifies the beginning of the URL, including the colon.

	search
	Specifies a query.

Method Summary
	reload
	Forces a reload of the window's current document.

	replace
	Loads the specified URL over the current history entry.

Examples
Example 1. The following two statements are equivalent and set the URL of the current window to the Netscape home page:
window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"
Example 2. The following statement sets the URL of a frame named frame2 to the Sun home page:
parent.frame2.location.href="http://www.sun.com/"
See also the examples for Anchor.
See also
History, document.URL
Properties
hash
A string beginning with a hash mark (#) that specifies an anchor name in the URL.
	Property of
	Location

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The hash property specifies a portion of the URL. This property applies to HTTP URLs only.
You can set the hash property at any time, although it is safer to set the href property to change a location. If the hash that you specify cannot be found in the current location, you get an error.
Setting the hash property navigates to the named anchor without reloading the document. This differs from the way a document is loaded when other location properties are set.
Examples
In the following example, the window.open statement creates a window called newWindow and loads the specified URL into it. The document.write statements display properties of newWindow.location in a window called msgWindow.
newWindow=window.open
 ("http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href = " +
 newWindow.location.href + "<P>")
msgWindow.document.write("newWindow.location.hash = " +
 newWindow.location.hash + "<P>")
msgWindow.document.close()
The previous example displays output such as the following:
newWindow.location.href =
 http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.hash = #checkbox_object
See also
Location.host, Location.hostname, Location.href, Location.pathname, Location.port, Location.protocol, Location.search
host
A string specifying the server name, subdomain, and domain name.
	Property of
	Location

Description
The host property specifies a portion of a URL. The host property is a substring of the hostname property. The hostname property is the concatenation of the host and port properties, separated by a colon. When the port property is null, the host property is the same as the hostname property.
You can set the host property at any time, although it is safer to set the href property to change a location. If the host that you specify cannot be found in the current location, you get an error.
Examples
In the following example, the window.open statement creates a window called newWindow and loads the specified URL into it. The document.write statements display properties of newWindow.location in a window called msgWindow.
newWindow=window.open
 ("http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href = " +
 newWindow.location.href + "<P>")
msgWindow.document.write("newWindow.location.host = " +
 newWindow.location.host + "<P>")
msgWindow.document.close()
The previous example displays output such as the following:
newWindow.location.href =
 http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.host = home.netscape.com
See also
Location.hash, Location.hostname, Location.href, Location.pathname, Location.port, Location.protocol, Location.search
hostname
A string containing the full hostname of the server, including the server name, subdomain, domain, and port number.
	Property of
	Location

Description
The hostname property specifies a portion of a URL. The hostname property is the concatenation of the host and port properties, separated by a colon. When the port property is 80 (the default), the host property is the same as the hostname property.
You can set the hostname property at any time, although it is safer to set the href property to change a location. If the hostname that you specify cannot be found in the current location, you get an error.
Examples
In the following example, the window.open statement creates a window called newWindow and loads the specified URL into it. The document.write statements display properties of newWindow.location in a window called msgWindow.
newWindow=window.open
 ("http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href = " +
 newWindow.location.href + "<P>")
msgWindow.document.write("newWindow.location.hostName = " +
 newWindow.location.hostName + "<P>")
msgWindow.document.close()
The previous example displays output such as the following:
newWindow.location.href =
 http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.hostName = home.netscape.com
See also
Location.hash, Location.host, Location.href, Location.pathname, Location.port, Location.protocol, Location.search
href
A string specifying the entire URL.
	Property of
	Location

Description
The href property specifies the entire URL. Other location object properties are substrings of the href property. If you want to change the URL associated with a window, you should do so by changing the href property; this correctly updates all of the other properties.
You can set the href property at any time.
Omitting a property name from the location object is equivalent to specifying location.href. For example, the following two statements are equivalent and set the URL of the current window to the Netscape home page:
window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"
Examples
In the following example, the window.open statement creates a window called newWindow and loads the specified URL into it. The document.write statements display all the properties of newWindow.location in a window called msgWindow.
newWindow=window.open
 ("http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href = " +
 newWindow.location.href + "<P>")
msgWindow.document.write("newWindow.location.protocol = " +
 newWindow.location.protocol + "<P>")
msgWindow.document.write("newWindow.location.host = " +
 newWindow.location.host + "<P>")
msgWindow.document.write("newWindow.location.hostName = " +
 newWindow.location.hostName + "<P>")
msgWindow.document.write("newWindow.location.port = " +
 newWindow.location.port + "<P>")
msgWindow.document.write("newWindow.location.pathname = " +
 newWindow.location.pathname + "<P>")
msgWindow.document.write("newWindow.location.hash = " +
 newWindow.location.hash + "<P>")
msgWindow.document.write("newWindow.location.search = " +
 newWindow.location.search + "<P>")
msgWindow.document.close()
The previous example displays output such as the following:
newWindow.location.href =
 http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.protocol = http:
newWindow.location.host = home.netscape.com
newWindow.location.hostName = home.netscape.com
newWindow.location.port =
newWindow.location.pathname =
 /comprod/products/navigator/version_2.0/script/
 script_info/objects.html
newWindow.location.hash = #checkbox_object
newWindow.location.search =
See also
Location.hash, Location.host, Location.hostname, Location.pathname, Location.port, Location.protocol, Location.search
pathname
A string specifying the URL-path portion of the URL.
	Property of
	Location

Description
The pathname property specifies a portion of the URL. The pathname supplies the details of how the specified resource can be accessed.
You can set the pathname property at any time, although it is safer to set the href property to change a location. If the pathname that you specify cannot be found in the current location, you get an error.
Examples
In the following example, the window.open statement creates a window called newWindow and loads the specified URL into it. The document.write statements display properties of newWindow.location in a window called msgWindow.
newWindow=window.open
 ("http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href = " +
 newWindow.location.href + "<P>")
msgWindow.document.write("newWindow.location.pathname = " +
 newWindow.location.pathname + "<P>")
msgWindow.document.close()
The previous example displays output such as the following:
newWindow.location.href =
 http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.pathname =
 /comprod/products/navigator/version_2.0/script/
 script_info/objects.html
See also
Location.hash, Location.host, Location.hostname, Location.href, Location.port, Location.protocol, Location.search
port
A string specifying the communications port that the server uses.
	Property of
	Location

Description
The port property specifies a portion of the URL. The port property is a substring of the hostname property. The hostname property is the concatenation of the host and port properties, separated by a colon.
You can set the port property at any time, although it is safer to set the href property to change a location. If the port that you specify cannot be found in the current location, you get an error. If the port property is not specified, it defaults to 80.
Examples
In the following example, the window.open statement creates a window called newWindow and loads the specified URL into it. The document.write statements display properties of newWindow.location in a window called msgWindow.
newWindow=window.open
 ("http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href = " +
 newWindow.location.href + "<P>")
msgWindow.document.write("newWindow.location.port = " +
 newWindow.location.port + "<P>")
msgWindow.document.close()
The previous example displays output such as the following:
newWindow.location.href =
 http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.port =
See also
Location.hash, Location.host, Location.hostname, Location.href, Location.pathname, Location.protocol, Location.search
protocol
A string specifying the beginning of the URL, up to and including the first colon.
	Property of
	Location

Description
The protocol property specifies a portion of the URL. The protocol indicates the access method of the URL. For example, the value "http:" specifies HyperText Transfer Protocol, and the value "javascript:" specifies JavaScript code.
You can set the protocol property at any time, although it is safer to set the href property to change a location. If the protocol that you specify cannot be found in the current location, you get an error.
Examples
In the following example, the window.open statement creates a window called newWindow and loads the specified URL into it. The document.write statements display properties of newWindow.location in a window called msgWindow.
newWindow=window.open
 ("http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object")
msgWindow.document.write("newWindow.location.href = " +
 newWindow.location.href + "<P>")
msgWindow.document.write("newWindow.location.protocol = " +
 newWindow.location.protocol + "<P>")
msgWindow.document.close()
The previous example displays output such as the following:
newWindow.location.href =
 http://home.netscape.com/comprod/products/navigator/
 version_2.0/script/script_info/objects.html#checkbox_object
newWindow.location.protocol = http:
See also
Location.hash, Location.host, Location.hostname, Location.href, Location.pathname, Location.port, Location.search
search
A string beginning with a question mark that specifies any query information in the URL.
	Property of
	Location

Description
The search property specifies a portion of the URL. This property applies to HTTP URLs only.
The search property contains variable and value pairs; each pair is separated by an ampersand. For example, two pairs in a search string could look as follows:
?x=7&y=5
You can set the search property at any time, although it is safer to set the href property to change a location. If the search that you specify cannot be found in the current location, you get an error.
Examples
In the following example, the window.open statement creates a window called newWindow and loads the specified URL into it. The document.write statements display properties of newWindow.location in a window called msgWindow.
newWindow=window.open
 ("http://guide-p.infoseek.com/WW/NS/Titles?qt=RFC+1738+&col=WW")
msgWindow.document.write("newWindow.location.href = " +
 newWindow.location.href + "<P>")
msgWindow.document.close()
msgWindow.document.write("newWindow.location.search = " +
 newWindow.location.search + "<P>")
msgWindow.document.close()
The previous example displays the following output:
newWindow.location.href =
 http://guide-p.infoseek.com/WW/NS/Titles?qt=RFC+1738+&col=WW
newWindow.location.search = ?qt=RFC+1738+&col=WW
See also
Location.hash, Location.host, Location.hostname, Location.href, Location.pathname, Location.port, Location.protocol
Methods
reload
Forces a reload of the window's current document (the document specified by the Location.href property).
	Method of
	Location

Syntax
reload(forceGet)
Parameters
	forceGet
	(Optional) If you supply true, forces an unconditional HTTP GET of the document from the server. This should not be used unless you have reason to believe that disk and memory caches are off or broken, or the server has a new version of the document (for example, if it is generated by a CGI on each request).

Description
This method uses the same policy that the browser's Reload button uses. The user interface for setting the default value of this policy varies for different browser versions.
By default, the reload method does not force a transaction with the server. However, if the user has set the preference to check every time, the method does a "conditional GET" request using an If-modified-since HTTP header, to ask the server to return the document only if its last-modified time is newer than the time the client keeps in its cache. In other words, reload reloads from the cache, unless the user has specified to check every time and the document has changed on the server since it was last loaded and saved in the cache.
Examples
The following example displays an image and three radio buttons. The user can click the radio buttons to choose which image is displayed. Clicking another button lets the user reload the document.
<SCRIPT>
function displayImage(theImage) {
 document.images[0].src=theImage
}
</SCRIPT>
<FORM NAME="imageForm">
Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image1" CHECKED
 onClick="displayImage('seaotter.gif')">Sea otter

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"
 onClick="displayImage('orca.gif')">Killer whale

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"
 onClick="displayImage('humpback.gif')">Humpback whale

<P><INPUT TYPE="button" VALUE="Click here to reload"
 onClick="window.location.reload()">
</FORM>
See also
Location.replace
replace
Loads the specified URL over the current history entry.
	Method of
	Location

	Implemented in
	Navigator 3.0

Syntax
replace("URL")
Parameters
	URL
	Specifies the URL to load.

Description
The replace method loads the specified URL over the current history entry. After calling the replace method, the user cannot navigate to the previous URL by using browser's Back button.
If your program will be run with JavaScript in Navigator 2.0, you could put the following line in a SCRIPT tag early in your program. This emulates replace, which was introduced in Navigator 3.0:
if (location.replace == null)
 location.replace = location.assign
The replace method does not create a new entry in the history list. To create an entry in the history list while loading a URL, use the History.go method.
Examples
The following example lets the user choose among several catalogs to display. The example displays two sets of radio buttons which let the user choose a season and a category, for example the Spring/Summer Clothing catalog or the Fall/Winter Home & Garden catalog. When the user clicks the Go button, the displayCatalog function executes the replace method, replacing the current URL with the URL appropriate for the catalog the user has chosen. After invoking displayCatalog, the user cannot navigate to the previous URL (the list of catalogs) by using browser's Back button.
<SCRIPT>
function displayCatalog() {
 var seaName=""
 var catName=""
 for (var i=0; i < document.catalogForm.season.length; i++) {
 if (document.catalogForm.season[i].checked) {
 seaName=document.catalogForm.season[i].value
 i=document.catalogForm.season.length
 }
 }
 for (var i in document.catalogForm.category) {
 if (document.catalogForm.category[i].checked) {
 catName=document.catalogForm.category[i].value
 i=document.catalogForm.category.length
 }
 }
 fileName=seaName + catName + ".html"
 location.replace(fileName)
}
</SCRIPT>
<FORM NAME="catalogForm">
Which catalog do you want to see?
<P>Season

<INPUT TYPE="radio" NAME="season" VALUE="q1" CHECKED>Spring/Summer

<INPUT TYPE="radio" NAME="season" VALUE="q3">Fall/Winter
<P>Category

<INPUT TYPE="radio" NAME="category" VALUE="clo" CHECKED>Clothing

<INPUT TYPE="radio" NAME="category" VALUE="lin">Linens

<INPUT TYPE="radio" NAME="category" VALUE="hom">Home & Garden
<P><INPUT TYPE="button" VALUE="Go" onClick="displayCatalog()">
</FORM>
screen
Contains properties describing the display screen and colors.
	Client-side object
	

Created by
The JavaScript runtime engine creates the screen object for you. You can access its properties automatically.

Description
This object contains read-only properties that allow you to get information about the user's display.
Property Summary
	availHeight
	Specifies the height of the screen, in pixels, minus permanent or semipermanent user interface features displayed by the operating system, such as the Taskbar on Windows.

	availWidth
	Specifies the width of the screen, in pixels, minus permanent or semipermanent user interface features displayed by the operating system, such as the Taskbar on Windows.

	colorDepth
	The bit depth of the color palette, if one is in use; otherwise, the value is derived from screen.pixelDepth.

	height
	Display screen height.

	pixelDepth
	Display screen color resolution (bits per pixel).

	width
	Display screen width.

Examples
The following function creates a string containing the current display properties:
function screen_properties() {
 document.examples.results.value = "("+screen.width+" x
 "+screen.height+") pixels, "+
 screen.pixelDepth +" bit depth, "+
 screen.colorDepth +" bit color palette depth.";
} // end function screen_properties
Properties
availHeight
Specifies the height of the screen, in pixels, minus permanent or semipermanent user interface features displayed by the operating system, such as the Taskbar on Windows.
	Property of
	screen

availWidth
Specifies the width of the screen, in pixels, minus permanent or semipermanent user interface features displayed by the operating system, such as the Taskbar on Windows.
	Property of
	screen

colorDepth
The bit depth of the color palette in bits per pixel, if a color palette is in use. Otherwise, this property is derived from screen.pixelDepth.
	Property of
	screen

height
Display screen height, in pixels.
	Property of
	screen

pixelDepth
Display screen color resolution, in bits per pixel.
	Property of
	screen

width
Display screen width, in pixels.
	Property of
	screen

Window
Represents a browser window or frame. This is the top-level object for each document, Location, and History object group.
	Client-side object.

Created by
The JavaScript runtime engine creates a Window object for each BODY or FRAMESET tag. It also creates a Window object to represent each frame defined in a FRAME tag. In addition, you can create other windows by calling the Window.open method. For details on defining a window, see open.
Event handlers
· onBlur
· onDragDrop
· onError
· onFocus
· onLoad
· onMove
· onResize
· onUnload
In Navigator 3.0, on some platforms, placing an onBlur or onFocus event handler in a FRAMESET tag has no effect.
Description
The Window object is the top-level object in the JavaScript client hierarchy. A Window object can represent either a top-level window or a frame inside a frameset. As a matter of convenience, you can think about a Frame object as a Window object that isn't a top-level window. However, there is not really a separate Frame class; these objects really are Window objects, with a very few minor differences:
· For a top-level window, the parent and top properties are references to the window itself. For a frame, the top refers to the topmost browser window, and parent refers to the parent window of the current window.
· For a top-level window, setting the defaultStatus or status property sets the text appearing in the browser status line. For a frame, setting these properties only sets the status line text when the cursor is over the frame.
· The close method is not useful for windows that are frames.
· To create an onBlur or onFocus event handler for a frame, you must set the onblur or onfocus property and specify it in all lowercase (you cannot specify it in HTML).
· If a FRAME tag contains SRC and NAME attributes, you can refer to that frame from a sibling frame by using parent.frameName or parent.frames[index]. For example, if the fourth frame in a set has NAME="homeFrame", sibling frames can refer to that frame using parent.homeFrame or parent.frames[3].
For all windows, the self and window properties of a Window object are synonyms for the current window, and you can optionally use them to refer to the current window. For example, you can close the current window by calling the close method of either window or self. You can use these properties to make your code more readable or to disambiguate the property reference self.status from a form called status. See the properties and methods listed below for more examples.
Because the existence of the current window is assumed, you do not have to refer to the name of the window when you call its methods and assign its properties. For example, status="Jump to a new location" is a valid property assignment, and close() is a valid method call.
However, when you open or close a window within an event handler, you must specify window.open() or window.close() instead of simply using open() or close(). Due to the scoping of static objects in JavaScript, a call to close() without specifying an object name is equivalent to document.close().
For the same reason, when you refer to the location object within an event handler, you must specify window.location instead of simply using location. A call to location without specifying an object name is equivalent to document.location, which is a synonym for document.URL.
You can refer to a window's Frame objects in your code by using the frames array. In a window with a FRAMESET tag, the frames array contains an entry for each frame.
A windows lacks event handlers until HTML that contains a BODY or FRAMESET tag is loaded into it.
Property Summary
	closed
	Specifies whether a window has been closed.

	defaultStatus
	Reflects the default message displayed in the window's status bar.

	document
	Contains information on the current document, and provides methods for displaying HTML output to the user.

	frames
	An array reflecting all the frames in a window.

	history
	Contains information on the URLs that the client has visited within a window.

	innerHeight
	Specifies the vertical dimension, in pixels, of the window's content area.

	innerWidth
	Specifies the horizontal dimension, in pixels, of the window's content area.

	length
	The number of frames in the window.

	location
	Contains information on the current URL.

	locationbar
	Represents the browser window's location bar.

	menubar
	Represents the browser window's menu bar.

	name
	A unique name used to refer to this window.

	opener
	Specifies the window name of the calling document when a window is opened using the open method

	outerHeight
	Specifies the vertical dimension, in pixels, of the window's outside boundary.

	outerWidth
	Specifies the horizontal dimension, in pixels, of the window's outside boundary.

	pageXOffset
	Provides the current x-position, in pixels, of a window's viewed page.

	pageYOffset
	Provides the current y-position, in pixels, of a window's viewed page.

	parent
	A synonym for a window or frame whose frameset contains the current frame.

	personalbar
	Represents the browser window's personal bar (also called the directories bar).

	scrollbars
	Represents the browser window's scroll bars.

	self
	A synonym for the current window.

	status
	Specifies a priority or transient message in the window's status bar.

	statusbar
	Represents the browser window's status bar.

	toolbar
	Represents the browser window's tool bar.

	top
	A synonym for the topmost browser window.

	window
	A synonym for the current window.

Method Summary
	alert
	Displays an Alert dialog box with a message and an OK button.

	back
	Undoes the last history step in any frame within the top-level window.

	blur
	Removes focus from the specified object.

	captureEvents
	Sets the window or document to capture all events of the specified type.

	clearInterval
	Cancels a timeout that was set with the setInterval method.

	clearTimeout
	Cancels a timeout that was set with the setTimeout method.

	close
	Closes the specified window.

	confirm
	Displays a Confirm dialog box with the specified message and OK and Cancel buttons.

	disableExternalCapture
	Disables external event capturing set by the enableExternalCapture method.

	enableExternalCapture
	Allows a window with frames to capture events in pages loaded from different locations (servers).

	find
	Finds the specified text string in the contents of the specified window.

	focus
	Gives focus to the specified object.

	forward
	Loads the next URL in the history list.

	handleEvent
	Invokes the handler for the specified event.

	home
	Points the browser to the URL specified in preferences as the user's home page.

	moveBy
	Moves the window by the specified amounts.

	moveTo
	Moves the top-left corner of the window to the specified screen coordinates.

	open
	Opens a new web browser window.

	print
	Prints the contents of the window or frame.

	prompt
	Displays a Prompt dialog box with a message and an input field.

	releaseEvents
	Sets the window to release captured events of the specified type, sending the event to objects further along the event hierarchy.

	resizeBy
	Resizes an entire window by moving the window's bottom-right corner by the specified amount.

	resizeTo
	Resizes an entire window to the specified outer height and width.

	routeEvent
	Passes a captured event along the normal event hierarchy.

	scroll
	Scrolls a window to a specified coordinate.

	scrollBy
	Scrolls the viewing area of a window by the specified amount.

	scrollTo
	Scrolls the viewing area of the window to the specified coordinates, such that the specified point becomes the top-left corner.

	setInterval
	Evaluates an expression or calls a function every time a specified number of milliseconds elapses.

	setTimeout
	Evaluates an expression or calls a function once after a specified number of milliseconds has elapsed.

	stop
	Stops the current download.

Examples
Example 1. Windows opening other windows. In the following example, the document in the top window opens a second window, window2, and defines push buttons that open a message window, write to the message window, close the message window, and close window2. The onLoad and onUnload event handlers of the document loaded into window2 display alerts when the window opens and closes.
win1.html, which defines the frames for the first window, contains the following code:
<HTML>
<HEAD>
<TITLE>Window object example: Window 1</TITLE>
</HEAD>
<BODY BGCOLOR="antiquewhite">
<SCRIPT>
window2=open("win2.html","secondWindow",
 "scrollbars=yes,width=250, height=400")
document.writeln("The first window has no name: "
 + window.name + "")
document.writeln("
The second window is named: "
 + window2.name + "")
</SCRIPT>
<FORM NAME="form1">
<P><INPUT TYPE="button" VALUE="Open a message window"
 onClick = "window3=window.open('','messageWindow',
 'scrollbars=yes,width=175, height=300')">
<P><INPUT TYPE="button" VALUE="Write to the message window"
 onClick="window3.document.writeln('Hey there');
 window3.document.close()">
<P><INPUT TYPE="button" VALUE="Close the message window"
 onClick="window3.close()">
<P><INPUT TYPE="button" VALUE="Close window2"
 onClick="window2.close()">
</FORM>
</BODY>
</HTML>
win2.html, which defines the content for window2, contains the following code:
<HTML>
<HEAD>
<TITLE>Window object example: Window 2</TITLE>
</HEAD>
<BODY BGCOLOR="oldlace"
 onLoad="alert('Message from ' + window.name + ': Hello, World.')"
 onUnload="alert('Message from ' + window.name + ': I\'m closing')">
Some numbers
one
two
three
four
</BODY>
</HTML>
Example 2. Creating frames. The following example creates two windows, each with four frames. In the first window, the first frame contains push buttons that change the background colors of the frames in both windows. framset1.html, which defines the frames for the first window, contains the following code:
<HTML>
<HEAD>
<TITLE>Frames and Framesets: Window 1</TITLE>
</HEAD>
<FRAMESET ROWS="50%,50%" COLS="40%,60%"
 onLoad="alert('Hello, World.')">
<FRAME SRC=framcon1.html NAME="frame1">
<FRAME SRC=framcon2.html NAME="frame2">
<FRAME SRC=framcon2.html NAME="frame3">
<FRAME SRC=framcon2.html NAME="frame4">
</FRAMESET>
</HTML>
framset2.html, which defines the frames for the second window, contains the following code:
<HTML>
<HEAD>
<TITLE>Frames and Framesets: Window 2</TITLE>
</HEAD>
<FRAMESET ROWS="50%,50%" COLS="40%,60%">
<FRAME SRC=framcon2.html NAME="frame1">
<FRAME SRC=framcon2.html NAME="frame2">
<FRAME SRC=framcon2.html NAME="frame3">
<FRAME SRC=framcon2.html NAME="frame4">
</FRAMESET>
</HTML>
framcon1.html, which defines the content for the first frame in the first window, contains the following code:
<HTML>
<BODY>
<H1>Frame1</H1>
<P>Click here
 to load a different file into frame 2.
<SCRIPT>
window2=open("framset2.htm","secondFrameset")
</SCRIPT>
<FORM>
<P><INPUT TYPE="button" VALUE="Change frame2 to teal"
 onClick="parent.frame2.document.bgColor='teal'">
<P><INPUT TYPE="button" VALUE="Change frame3 to slateblue"
 onClick="parent.frames[2].document.bgColor='slateblue'">
<P><INPUT TYPE="button" VALUE="Change frame4 to darkturquoise"
 onClick="top.frames[3].document.bgColor='darkturquoise'">
<P><INPUT TYPE="button" VALUE="window2.frame2 to violet"
 onClick="window2.frame2.document.bgColor='violet'">
<P><INPUT TYPE="button" VALUE="window2.frame3 to fuchsia"
 onClick="window2.frames[2].document.bgColor='fuchsia'">
<P><INPUT TYPE="button" VALUE="window2.frame4 to deeppink"
 onClick="window2.frames[3].document.bgColor='deeppink'">
</FORM>
</BODY>
</HTML>
framcon2.html, which defines the content for the remaining frames, contains the following code:
<HTML>
<BODY>
<P>This is a frame.
</BODY>
</HTML>
framcon3.html, which is referenced in a Link object in framcon1.html, contains the following code:
<HTML>
<BODY>
<P>This is a frame. What do you think?
</BODY>
</HTML>
See also
document, Frame
Properties
closed
Specifies whether a window is closed.
	Property of
	Window

	Read-only
	

Description
The closed property is a boolean value that specifies whether a window has been closed. When a window closes, the window object that represents it continues to exist, and its closed property is set to true.
Use closed to determine whether a window that you opened, and to which you still hold a reference (from the return value of window.open), is still open. Once a window is closed, you should not attempt to manipulate it.
Examples
Example 1. The following code opens a window, win1, then later checks to see if that window has been closed. A function is called depending on whether win1 is closed.
win1=window.open('opener1.html','window1','width=300,height=300')
...
if (win1.closed)
 function1()
 else
 function2()
Example 2. The following code determines if the current window's opener window is still closed, and calls the appropriate function.
if (window.opener.closed)
 function1()
 else
 function2()
See also
Window.close, Window.open
defaultStatus
The default message displayed in the status bar at the bottom of the window.
	Property of
	Window

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The defaultStatus message appears when nothing else is in the status bar. Do not confuse the defaultStatus property with the status property. The status property reflects a priority or transient message in the status bar, such as the message that appears when a mouseOver event occurs over an anchor.
You can set the defaultStatus property at any time. You must return true if you want to set the defaultStatus property in the onMouseOut or onMouseOver event handlers.
Examples
In the following example, the statusSetter function sets both the status and defaultStatus properties in an onMouseOver event handler:
function statusSetter() {
 window.defaultStatus = "Click the link for the Netscape home page"
 window.status = "Netscape home page"
}
<A HREF="http://home.netscape.com"
 onMouseOver = "statusSetter(); return true">Netscape
In the previous example, notice that the onMouseOver event handler returns a value of true. You must return true to set status or defaultStatus in an event handler.
See also
Window.status
document
Contains information on the current document, and provides methods for displaying HTML output to the user.
	Property of
	Window

Description
The value of this property is the window's associated document object.
frames
An array of objects corresponding to child frames (created with the FRAME tag) in source order.
	Property of
	Window

	Read-only
	

You can refer to the child frames of a window by using the frames array. This array contains an entry for each child frame (created with the FRAME tag) in a window containing a FRAMESET tag; the entries are in source order. For example, if a window contains three child frames whose NAME attributes are fr1, fr2, and fr3, you can refer to the objects in the images array either as:
parent.frames["fr1"]
parent.frames["fr2"]
parent.frames["fr3"]
or as:
parent.frames[0]
parent.frames[1]
parent.frames[2]
You can find out how many child frames the window has by using the length property of the Window itself or of the frames array.
The value of each element in the frames array is <object nameAttribute>, where nameAttribute is the NAME attribute of the frame.
history
Contains information on the URLs that the client has visited within a window.
	Property of
	Window

Description
The value of this property is the window's associated History object.
innerHeight
Specifies the vertical dimension, in pixels, of the window's content area.
	Property of
	Window

Description
To create a window smaller than 100 x 100 pixels, set this property in a signed script.
See also
Window.innerWidth, Window.outerHeight, Window.outerWidth
innerWidth
Specifies the horizontal dimension, in pixels, of the window's content area.
	Property of
	Window

Description
To create a window smaller than 100 x 100 pixels, set this property in a signed script.
See also
Window.innerHeight, Window.outerHeight, Window.outerWidth
length
The number of child frames in the window.
	Property of
	Window

	Read-only
	

Description
This property gives you the same result as using the length property of the frames array.
location
Contains information on the current URL.
	Property of
	Window

Description
The value of this property is the window's associated Location object.
locationbar
Represents the browser window's location bar (the region containing the bookmark and URL areas).
	Property of
	Window

Description
The value of the locationbar property itself has one property, visible. If true, the location bar is visible; if false, it is hidden.
Security
Setting the value of the location bar's visible property requires the UniversalBrowserWrite privilege.
Examples
The following example would make the referenced window "chromeless" (chromeless windows lack toolbars, scrollbars, status areas, and so on, much like a dialog box) by hiding most of the user interface toolbars:
self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;
menubar
Represents the browser window's menu bar. This region contains browser's drop-down menus such as File, Edit, View, Go, Communicator, and so on.
	Property of
	Window

Description
The value of the menubar property itself one property, visible. If true, the menu bar is visible; if false, it is hidden.
Security
Setting the value of the menu bar's visible property requires the UniversalBrowserWrite privilege..
Examples
The following example would make the referenced window "chromeless" (chromeless windows lack toolbars, scrollbars, status areas, and so on, much like a dialog box) by hiding most of the user interface toolbars:
self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;
name
A string specifying the window's name.
	Property of
	Window

	Read-only (2.0); Modifiable (later versions)

Description
In Navigator 2.0, NAME was a read-only property. In later versions, this property is modifiable by your code. This allows you to assign a name to a top-level window.
Examples
In the following example, the first statement creates a window called netscapeWin. The second statement displays the value "netscapeHomePage" in the Alert dialog box, because "netscapeHomePage" is the value of the windowName argument of netscapeWin.
netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)
opener
Specifies the window of the calling document when a window is opened using the open method.
	Property of
	Window

Description
When a source document opens a destination window by calling the open method, the opener property specifies the window of the source document. Evaluate the opener property from the destination window.
This property persists across document unload in the opened window.
You can change the opener property at any time.
You may use Window.open to open a new window and then use Window.open on that window to open another window, and so on. In this way, you can end up with a chain of opened windows, each of which has an opener property pointing to the window that opened it.
Communicator allows a maximum of 100 windows to be around at once. If you open window2 from window1 and then are done with window1, be sure to set the opener property of window2 to null. This allows JavaScript to garbage collect window1. If you do not set the opener property to null, the window1 object remains, even though it's no longer really needed.
Examples
Example 1: Close the opener. The following code closes the window that opened the current window. When the opener window closes, opener is unchanged. However, window.opener.name then evaluates to undefined.
window.opener.close()
Example 2: Close the main browser window.
top.opener.close()
Example 3: Evaluate the name of the opener. A window can determine the name of its opener as follows:
document.write("
opener property is " + window.opener.name)
Example 4: Change the value of opener. The following code changes the value of the opener property to null. After this code executes, you cannot close the opener window as shown in Example 1.
window.opener=null
Example 5: Change a property of the opener. The following code changes the background color of the window specified by the opener property.
window.opener.document.bgColor='bisque'
See also
Window.close, Window.open
outerHeight
Specifies the vertical dimension, in pixels, of the window's outside boundary.
	Property of
	Window

Description
The outer boundary includes the scroll bars, the status bar, the tool bars, and other "chrome" (window border user interface elements). To create a window smaller than 100 x 100 pixels, set this property in a signed script.
See also
Window.innerWidth, Window.innerHeight, Window.outerWidth
outerWidth
Specifies the horizontal dimension, in pixels, of the window's outside boundary.
	Property of
	Window

Description
The outer boundary includes the scroll bars, the status bar, the tool bars, and other "chrome" (window border user interface elements). To create a window smaller than 100 x 100 pixels, set this property in a signed script.
See also
Window.innerWidth, Window.innerHeight, Window.outerHeight
pageXOffset
Provides the current x-position, in pixels, of a window's viewed page.
	Property of
	Window

	Read-only
	

Description
The pageXOffset property provides the current x-position of a page as it relates to the upper-left corner of the window's content area. This property is useful when you need to find the current location of the scrolled page before using scrollTo or scrollBy.
Example
The following example returns the x-position of the viewed page.
x = myWindow.pageXOffset
See Also
Window.pageYOffset
pageYOffset
Provides the current y-position, in pixels, of a window's viewed page.
	Property of
	Window

	Read-only
	

Description
The pageYOffset property provides the current y-position of a page as it relates to the upper-left corner of the window's content area. This property is useful when you need to find the current location of the scrolled page before using scrollTo or scrollBy.
Example
The following example returns the y-position of the viewed page.
x = myWindow.pageYOffset
See also
Window.pageXOffset
parent
The parent property is the window or frame whose frameset contains the current frame.
	Property of
	Window

	Read-only
	

Description
This property is only meaningful for frames; that is, windows that are not top-level windows.
The parent property refers to the FRAMESET window of a frame. Child frames within a frameset refer to sibling frames by using parent in place of the window name in one of the following ways:
parent.frameName
parent.frames[index]
For example, if the fourth frame in a set has NAME="homeFrame", sibling frames can refer to that frame using parent.homeFrame or parent.frames[3].
You can use parent.parent to refer to the "grandparent" frame or window when a FRAMESET tag is nested within a child frame.
The value of the parent property is
<object nameAttribute>
where nameAttribute is the NAME attribute if the parent is a frame, or an internal reference if the parent is a window.
Examples
See examples for Frame.
personalbar
Represents the browser window's personal bar (also called the directories bar). This is the region the user can use for easy access to certain bookmarks.
	Property of
	Window

Description
The value of the personalbar property itself one property, visible. If true, the personal bar is visible; if false, it is hidden.
Security
Setting the value of the personal bar's visible property requires the UniversalBrowserWrite privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Examples
The following example would make the referenced window "chromeless" (chromeless windows lack toolbars, scrollbars, status areas, and so on, much like a dialog box) by hiding most of the user interface toolbars:
self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;
scrollbars
Represents the browser window's vertical and horizontal scroll bars for the document area.
	Property of
	Window

Description
The value of the scrollbars property itself has one property, visible. If true, both scrollbars are visible; if false, they are hidden.
Security
Setting the value of the scrollbars' visible property requires the UniversalBrowserWrite privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Examples
The following example would make the referenced window "chromeless" (chromeless windows lack toolbars, scrollbars, status areas, and so on, much like a dialog box) by hiding most of the user interface toolbars:
self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;
self
The self property is a synonym for the current window.
	Property of
	Window

	Read-only
	

Description
The self property refers to the current window. That is, the value of this property is a synonym for the object itself.
Use the self property to disambiguate a window property from a form or form element of the same name. You can also use the self property to make your code more readable.
The value of the self property is
<object nameAttribute>
where nameAttribute is the NAME attribute if self refers to a frame, or an internal reference if self refers to a window.
Examples
In the following example, self.status is used to set the status property of the current window. This usage disambiguates the status property of the current window from a form or form element called status within the current window.
<A HREF=""
 onClick="this.href=pickRandomURL()"
 onMouseOver="self.status='Pick a random URL' ; return true">
Go!
status
Specifies a priority or transient message in the status bar at the bottom of the window, such as the message that appears when a mouseOver event occurs over an anchor.
	Property of
	Window

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
Do not confuse the status property with the defaultStatus property. The defaultStatus property reflects the default message displayed in the status bar.
You can set the status property at any time. You must return true if you want to set the status property in the onMouseOver event handler.
Examples
Suppose you have created a JavaScript function called pickRandomURL that lets you select a URL at random. You can use the onClick event handler of an anchor to specify a value for the HREF attribute of the anchor dynamically, and the onMouseOver event handler to specify a custom message for the window in the status property:
<A HREF=""
 onClick="this.href=pickRandomURL()"
 onMouseOver="self.status='Pick a random URL'; return true">
Go!
In the preceding example, the status property of the window is assigned to the window's self property, as self.status.
See also
Window.defaultStatus
statusbar
Represents the browser window's status bar. This is the region containing the security indicator, browser status, and so on.
	Property of
	Window

Description
The value of the statusbar property itself one property, visible. If true, the status bar is visible; if false, it is hidden.
Security
Setting the value of the status bar's visible property requires the UniversalBrowserWrite privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Examples
The following example would make the referenced window "chromeless" (chromeless windows lack toolbars, scrollbars, status areas, and so on, much like a dialog box) by hiding most of the user interface toolbars:
self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;
toolbar
Represents the browser window's tool bar, containing the navigation buttons, such as Back, Forward, Reload, Home, and so on.
	Property of
	Window

Description
The value of the toolbar property itself one property, visible. If true, the tool bar is visible; if false, it is hidden.
Security
Setting the value of the tool bar's visible property requires the UniversalBrowserWrite privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Examples
The following example would make the referenced window "chromeless" (chromeless windows lack toolbars, scrollbars, status areas, and so on, much like a dialog box) by hiding most of the user interface toolbars:
self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;
top
The top property is a synonym for the topmost browser window, which is a document window or web browser window.
	Property of
	Window

	Read-only
	

Description
The top property refers to the topmost window that contains frames or nested framesets. Use the top property to refer to this ancestor window.
The value of the top property is
<object objectReference>
where objectReference is an internal reference.
Examples
The statement top.close() closes the topmost ancestor window.
The statement top.length specifies the number of frames contained within the topmost ancestor window. When the topmost ancestor is defined as follows, top.length returns three:
<FRAMESET COLS="30%,40%,30%">
<FRAME SRC=child1.htm NAME="childFrame1">
<FRAME SRC=child2.htm NAME="childFrame2">
<FRAME SRC=child3.htm NAME="childFrame3">
</FRAMESET>
The following example sets the background color of a frame called myFrame to red. myFrame is a child of the topmost ancestor window.
top.myFrame.document.bgColor="red"
window
The window property is a synonym for the current window or frame.
	Property of
	Window

	Read-only
	

Description
The window property refers to the current window or frame. That is, the value of this property is a synonym for the object itself.
Although you can use the window property as a synonym for the current frame, your code may be more readable if you use the self property. For example, window.name and self.name both specify the name of the current frame, but self.name may be easier to understand (because a frame is not displayed as a separate window).
Use the window property to disambiguate a property of the window object from a form or form element of the same name. You can also use the window property to make your code more readable.
The value of the window property is
<object nameAttribute>
where nameAttribute is the NAME attribute if window refers to a frame, or an internal reference if window refers to a window.
Examples
In the following example, window.status is used to set the status property of the current window. This usage disambiguates the status property of the current window from a form called "status" within the current window.
<A HREF=""
 onClick="this.href=pickRandomURL()"
 onMouseOver="window.status='Pick a random URL' ; return true">
Go!
See also
Window.self
Methods
alert
Displays an Alert dialog box with a message and an OK button.
	Method of
	Window

Syntax
alert("message")
Parameters
	message
	A string.

Description
An alert dialog box looks as follows:
[image: alert]
Use the alert method to display a message that does not require a user decision. The message argument specifies a message that the dialog box contains.
You cannot specify a title for an alert dialog box, but you can use the open method to create your own alert dialog box. See open.
Examples
In the following example, the testValue function checks the name entered by a user in the Text object of a form to make sure that it is no more than eight characters in length. This example uses the alert method to prompt the user to enter a valid value.
function testValue(textElement) {
 if (textElement.length > 8) {
 alert("Please enter a name that is 8 characters or less")
 }
}
You can call the testValue function in the onBlur event handler of a form's Text object, as shown in the following example:
Name: <INPUT TYPE="text" NAME="userName"
 onBlur="testValue(userName.value)">
See also
Window.confirm, Window.prompt
back
Undoes the last history step in any frame within the top-level window; equivalent to the user pressing the browser's Back button.
	Method of
	Window

Syntax
back()
Parameters
None
Description
Calling the back method is equivalent to the user pressing the browser's Back button. That is, back undoes the last step anywhere within the top-level window, whether it occurred in the same frame or in another frame in the tree of frames loaded from the top-level window. In contrast, the history object's back method backs up the current window or frame history one step.
For example, consider the following scenario. While in Frame A, you click the Forward button to change Frame A's content. You then move to Frame B and click the Forward button to change Frame B's content. If you move back to Frame A and call FrameA.back(), the content of Frame B changes (clicking the Back button behaves the same).
If you want to navigate Frame A separately, use FrameA.history.back().
Examples
The following custom buttons perform the same operation as the browser's Back button:
<P><INPUT TYPE="button" VALUE="< Go Back"
 onClick="history.back()">
<P><INPUT TYPE="button" VALUE="> Go Back"
 onClick="myWindow.back()">
See also
Window.forward, History.back
blur
Removes focus from the specified object.
	Method of
	Window

Syntax
blur()
Parameters
None
Description
Use the blur method to remove focus from a specific window or frame. Removing focus from a window sends the window to the background in most windowing systems.
See also
Window.focus
captureEvents
Sets the window to capture all events of the specified type.
	Method of
	Window

Syntax
captureEvents(eventType)
Parameters
	eventType
	The type of event to be captured. The available event types are listed with the event object.

Security
When a window with frames wants to capture events in pages loaded from different locations (servers), you need to use captureEvents in a signed script and precede it with enableExternalCapture. You must have the UniversalBrowserWrite privilege. For more information and an example, see enableExternalCapture. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
See also
captureEvents works in tandem with releaseEvents, routeEvent, and handleEvent. For more information, see "Events in Navigator 4.0".
clearInterval
Cancels a timeout that was set with the setInterval method.
	Method of
	Window

Syntax
clearInterval(intervalID)
Parameters
	intervalID
	Timeout setting that was returned by a previous call to the setInterval method.

Description
See setInterval.
Examples
See setInterval.
See also
Window.setInterval
clearTimeout
Cancels a timeout that was set with the setTimeout method.
	Method of
	Window

Syntax
clearTimeout(timeoutID)
Parameters
	timeoutID
	A timeout setting that was returned by a previous call to the setTimeout method.

Description
See setTimeout.
Examples
See setTimeout.
See also
Window.clearInterval, Window.setTimeout
close
Closes the specified window.
	Method of
	Window

Syntax
close()
Parameters
None
Security
Navigator 4.0: To unconditionally close a window, you need the UniversalBrowserWrite privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Description
The close method closes the specified window. If you call close without specifying a windowReference, JavaScript closes the current window.
The close method closes only windows opened by JavaScript using the open method. If you attempt to close any other window, a confirm is generated, which lets the user choose whether the window closes. This is a security feature to prevent "mail bombs" containing self.close(). However, if the window has only one document (the current one) in its session history, the close is allowed without any confirm. This is a special case for one-off windows that need to open other windows and then dispose of themselves.
In event handlers, you must specify window.close() instead of simply using close(). Due to the scoping of static objects in JavaScript, a call to close() without specifying an object name is equivalent to document.close().
Examples
Example 1. Any of the following examples closes the current window:
window.close()
self.close()
close()
Example 2: Close the main browser window. The following code closes the main browser window.
top.opener.close()
Example 3. The following example closes the messageWin window:
messageWin.close()
This example assumes that the window was opened in a manner similar to the following:
messageWin=window.open("")
See also
Window.closed, Window.open
confirm
Displays a Confirm dialog box with the specified message and OK and Cancel buttons.
	Method of
	Window

Syntax
confirm("message")
Parameters
	message
	A string.

Description
A confirm dialog box looks as follows:
[image: confirm]
Use the confirm method to ask the user to make a decision that requires either an OK or a Cancel. The message argument specifies a message that prompts the user for the decision. The confirm method returns true if the user chooses OK and false if the user chooses Cancel.
You cannot specify a title for a confirm dialog box, but you can use the open method to create your own confirm dialog. See open.
Examples
This example uses the confirm method in the confirmCleanUp function to confirm that the user of an application really wants to quit. If the user chooses OK, the custom cleanUp function closes the application.
function confirmCleanUp() {
 if (confirm("Are you sure you want to quit this application?")) {
 cleanUp()
 }
}
You can call the confirmCleanUp function in the onClick event handler of a form's push button, as shown in the following example:
<INPUT TYPE="button" VALUE="Quit" onClick="confirmCleanUp()">
See also
Window.alert, Window.prompt
disableExternalCapture
Disables external event capturing set by the enableExternalCapture method.
	Method of
	Window

Syntax
disableExternalCapture()
Parameters
None
Description
See enableExternalCapture.
enableExternalCapture
Allows a window with frames to capture events in pages loaded from different locations (servers).
	Method of
	Window

Syntax
enableExternalCapture()
Parameters
None
Description
Use this method in a signed script requesting UniversalBrowserWrite privileges, and use it before calling the captureEvents method.
If Communicator sees additional scripts that cause the set of principals in effect for the container to be downgraded, it disables external capture of events. Additional calls to enableExternalCapture (after acquiring the UniversalBrowserWrite privilege under the reduced set of principals) can be made to enable external capture again.
Example
In the following example, the window is able to capture all Click events that occur across its frames.
<SCRIPT ARCHIVE="myArchive.jar" ID="2">
function captureClicks() {
 netscape.security.PrivilegeManager.enablePrivilege(
 "UniversalBrowserWrite");
 enableExternalCapture();
 captureEvents(Event.CLICK);
 ...
}
</SCRIPT>
See also
Window.disableExternalCapture, Window.captureEvents
find
Finds the specified text string in the contents of the specified window.
	Method of
	Window

Syntax
find(string, casesensitive, backward)
Parameters
	string
	(Optional) The text string for which to search.

	casesensitive
	(Optional) Boolean value. If true, specifies a case-sensitive search. If you supply this parameter, you must also supply backward.

	backward
	(Optional) Boolean. If true, specifies a backward search. If you supply this parameter, you must also supply casesensitive.

Returns
true if the string is found; otherwise, false.
Description
When a string is specified, the browser performs a case-insensitive, forward search. If a string is not specified, the method displays the Find dialog box, allowing the user to enter a search string.
focus
Gives focus to the specified object.
	Method of
	Window

Syntax
focus()
Parameters
None
Description
Use the focus method to navigate to a specific window or frame, and give it focus. Giving focus to a window brings the window forward in most windowing systems.
In Navigator 3.0, on some platforms, the focus method gives focus to a frame but the focus is not visually apparent (for example, the frame's border is not darkened).
Examples
In the following example, the checkPassword function confirms that a user has entered a valid password. If the password is not valid, the focus method returns focus to the Password object and the select method highlights it so the user can reenter the password.
function checkPassword(userPass) {
 if (badPassword) {
 alert("Please enter your password again.")
 userPass.focus()
 userPass.select()
 }
}
This example assumes that the Password object is defined as
<INPUT TYPE="password" NAME="userPass">
See also
Window.blur
forward
Points the browser to the next URL in the current history list; equivalent to the user pressing the browser's Forward button
	Method of
	Window

Syntax
history.forward()
forward()
Parameters
None
Description
This method performs the same action as a user choosing the Forward button in the browser. The forward method is the same as history.go(1).
When used with the Frame object, forward behaves as follows: While in Frame A, you click the Back button to change Frame A's content. You then move to Frame B and click the Back button to change Frame B's content. If you move back to Frame A and call FrameA.forward(), the content of Frame B changes (clicking the Forward button behaves the same). If you want to navigate Frame A separately, use FrameA.history.forward().
Examples
The following custom buttons perform the same operation as the browser's Forward button:
<P><INPUT TYPE="button" VALUE="< Go Forth"
 onClick="history.forward()">
<P><INPUT TYPE="button" VALUE="> Go Forth"
 onClick="myWindow.forward()">
See also
Window.back
handleEvent
Invokes the handler for the specified event.
	Method of
	Window

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the specified object has an event handler.

Description
handleEvent works in tandem with captureEvents, releaseEvents, and routeEvent. For more information, see "Events in Navigator 4.0".
home
Points the browser to the URL specified in preferences as the user's home page; equivalent to the user pressing the browser's Home button.
	Method of
	Window

Syntax
home()
Parameters
None
Description
This method performs the same action as a user choosing the Home button in the browser.
moveBy
Moves the window relative to its current position, moving the specified number of pixels.
	Method of
	Window

Syntax
moveBy(horizontal, vertical)
Parameters
	horizontal
	The number of pixels by which to move the window horizontally.

	vertical
	The number of pixels by which to move the window vertically.

Description
This method moves the window by adding or subtracting the specified number of pixels to the current location.
Security
Exceeding any of the boundaries of the screen (to hide some or all of a window) requires signed JavaScript, so a window won't move past the screen boundaries. You need the UniversalBrowserWrite privilege for this. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Examples:
To move the current window 5 pixels up towards the top of the screen (x-axis), and 10 pixels towards the right (y-axis) of the current window position, use this statement:
self.moveBy(-5,10); // relative positioning
See also
Window.moveTo
moveTo
Moves the top-left corner of the window to the specified screen coordinates.
	Method of
	Window

Syntax
moveTo(x-coordinate, y-coordinate)
Parameters
	x-coordinate
	The left edge of the window in screen coordinates.

	y-coordinate
	The top edge of the window in screen coordinates.

Description
This method moves the window to the absolute pixel location indicated by its parameters. The origin of the axes is at absolute position (0,0); this is the upper left-hand corner of the display.
Security
Exceeding any of the boundaries of the screen (to hide some or all of a window) requires signed JavaScript, so a window won't move past the screen boundaries. You need the UniversalBrowserWrite privilege for this. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Examples:
To move the current window to 25 pixels from the top boundary of the screen (x-axis), and 10 pixels from the left boundary of the screen (y-axis), use this statement:
self.moveTo(25,10); // absolute positioning
See also
Window.moveBy
open
Opens a new web browser window.
	Method of
	Window

Syntax
open(URL, windowName, windowFeatures)
Parameters
	URL
	A string specifying the URL to open in the new window. See the Location object for a description of the URL components.

	windowName
	A string specifying the window name to use in the TARGET attribute of a FORM or A tag. windowName can contain only alphanumeric or underscore (_) characters.

	windowFeatures
	(Optional) A string containing a comma-separated list determining whether or not to create various standard window features. These options are described below.

Description
In event handlers, you must specify window.open() instead of simply using open(). Due to the scoping of static objects in JavaScript, a call to open() without specifying an object name is equivalent to document.open().
The open method opens a new Web browser window on the client, similar to choosing New Navigator Window from the File menu of the browser. The URL argument specifies the URL contained by the new window. If URL is an empty string, a new, empty window is created.
You can use open on an existing window, and if you pass the empty string for the URL, you will get a reference to the existing window, but not load anything into it. You can, for example, then look for properties in the window.
windowFeatures is an optional string containing a comma-separated list of options for the new window (do not include any spaces in this list). After a window is open, you cannot use JavaScript to change the windowFeatures. The features you can specify are:
	alwaysLowered
	(Navigator 4.0) If yes, creates a new window that floats below other windows, whether it is active or not. This is a secure feature and must be set in signed scripts.

	alwaysRaised
	(Navigator 4.0) If yes, creates a new window that floats on top of other windows, whether it is active or not. This is a secure feature and must be set in signed scripts.

	dependent
	(Navigator 4.0) If yes, creates a new window as a child of the current window. A dependent window closes when its parent window closes. On Windows platforms, a dependent window does not show on the task bar.

	directories
	If yes, creates the standard browser directory buttons, such as What's New and What's Cool.

	height
	(Navigator 2.0 and 3.0) Specifies the height of the window in pixels.

	hotkeys
	(Navigator 4.0) If no (or 0), disables most hotkeys in a new window that has no menu bar. The security and quit hotkeys remain enabled.

	innerHeight
	(Navigator 4.0) Specifies the height, in pixels, of the window's content area. To create a window smaller than 100 x 100 pixels, set this feature in a signed script. This feature replaces height, which remains for backwards compatibility.

	innerWidth
	(Navigator 4.0) Specifies the width, in pixels, of the window's content area. To create a window smaller than 100 x 100 pixels, set this feature in a signed script. This feature replaces width, which remains for backwards compatibility.

	location
	If yes, creates a Location entry field.

	menubar
	If yes, creates the menu at the top of the window.

	outerHeight
	(Navigator 4.0) Specifies the vertical dimension, in pixels, of the outside boundary of the window. To create a window smaller than 100 x 100 pixels, set this feature in a signed script.

	resizable
	If yes, allows a user to resize the window.

	screenX
	(Navigator 4.0) Specifies the distance the new window is placed from the left side of the screen. To place a window offscreen, set this feature in a signed scripts.

	screenY
	(Navigator 4.0) Specifies the distance the new window is placed from the top of the screen. To place a window offscreen, set this feature in a signed scripts.

	scrollbars
	If yes, creates horizontal and vertical scrollbars when the Document grows larger than the window dimensions.

	status
	If yes, creates the status bar at the bottom of the window.

	titlebar
	(Navigator 4.0) If yes, creates a window with a title bar. To set the titlebar to no, set this feature in a signed script.

	toolbar
	If yes, creates the standard browser toolbar, with buttons such as Back and Forward.

	width
	(Navigator 2.0 and 3.0) Specifies the width of the window in pixels.

	z-lock
	(Navigator 4.0) If yes, creates a new window that does not rise above other windows when activated. This is a secure feature and must be set in signed scripts.

Many of these features (as noted above) can either be yes or no. For these features, you can use 1 instead of yes and 0 instead of no. If you want to turn a feature on, you can also simply list the feature name in the windowFeatures string.
If windowName does not specify an existing window and you do not supply the windowFeatures parameter, all of the features which have a yes/no choice are yes by default. However, if you do supply the windowFeatures parameter, then the titlebar and hotkeys are still yes by default, but the other features which have a yes/no choice are no by default.
For example, all of the following statements turn on the toolbar option and turn off all other Boolean options:
open("", "messageWindow", "toolbar")
open("", "messageWindow", "toolbar=yes")
open("", "messageWindow", "toolbar=1")
The following statement turn on the location and directories options and turns off all other Boolean options:
open("", "messageWindow", "toolbar,directories=yes")
How the alwaysLowered, alwaysRaised, and z-lock features behave depends on the windowing hierarchy of the platform. For example, on Windows, an alwaysLowered or z-locked browser window is below all windows in all open applications. On Macintosh, an alwaysLowered browser window is below all browser windows, but not necessarily below windows in other open applications. Similarly for an alwaysRaised window.
You may use open to open a new window and then use open on that window to open another window, and so on. In this way, you can end up with a chain of opened windows, each of which has an opener property pointing to the window that opened it.
Communicator allows a maximum of 100 windows to be around at once. If you open window2 from window1 and then are done with window1, be sure to set the opener property of window2 to null. This allows JavaScript to garbage collect window1. If you do not set the opener property to null, the window1 object remains, even though it's no longer really needed.
Security
To perform the following operations using the specified screen features, you need the UniversalBrowserWrite privilege:
· To create a window smaller than 100 x 100 pixels or larger than the screen can accommodate by using innerWidth, innerHeight, outerWidth, and outerHeight.
· To place a window off screen by using screenX and screenY.
· To create a window without a titlebar by using titlebar.
· To use alwaysRaised, alwaysLowered, or z-lock for any setting.
For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Examples
Example 1. In the following example, the windowOpener function opens a window and uses write methods to display a message:
function windowOpener() {
 msgWindow=window.open("","displayWindow","menubar=yes")
 msgWindow.document.write
 ("<HEAD><TITLE>Message window</TITLE></HEAD>")
 msgWindow.document.write
 ("<CENTER><BIG>Hello, world!</BIG></CENTER>")
}
Example 2. The following is an onClick event handler that opens a new client window displaying the content specified in the file sesame.html. The window opens with the specified option settings; all other options are false because they are not specified.
<FORM NAME="myform">
<INPUT TYPE="button" NAME="Button1" VALUE="Open Sesame!"
 onClick="window.open ('sesame.html', 'newWin',
 'scrollbars=yes,status=yes,width=300,height=300')">
</FORM>
See also
Window.close
print
Prints the contents of the window.
	Method of
	Window

Syntax
print()
Parameters
None
prompt
Displays a Prompt dialog box with a message and an input field.
	Method of
	Window

Syntax
prompt(message, inputDefault)
Parameters
	message
	A string to be displayed as the message.

	inputDefault
	(Optional) A string or integer representing the default value of the input field.

Description
A prompt dialog box looks as follows:
[image: prompt]
Use the prompt method to display a dialog box that receives user input. If you do not specify an initial value for inputDefault, the dialog box displays <undefined>.
You cannot specify a title for a prompt dialog box, but you can use the open method to create your own prompt dialog. See open.
Examples
prompt("Enter the number of cookies you want to order:", 12)
See also
Window.alert, Window.confirm
releaseEvents
Sets the window or document to release captured events of the specified type, sending the event to objects further along the event hierarchy.
	Method of
	Window

Note
If the original target of the event is a window, the window receives the event even if it is set to release that type of event.
Syntax
releaseEvents(eventType)
Parameters
	eventType
	Type of event to be captured.

Description
releaseEvents works in tandem with captureEvents, routeEvent, and handleEvent. For more information, see "Events in Navigator 4.0".
resizeBy
Resizes an entire window by moving the window's bottom-right corner by the specified amount.
	Method of
	Window

Syntax
resizeBy(horizontal, vertical)
Parameters
	horizontal
	The number of pixels by which to resize the window horizontally.

	vertical
	The number of pixels by which to resize the window vertically.

Description
This method changes the window's dimensions by setting its outerWidth and outerHeight properties. The upper left-hand corner remains anchored and the lower right-hand corner moves. resizeBy moves the window by adding or subtracting the specified number of pixels to that corner's current location.
Security
Exceeding any of the boundaries of the screen (to hide some or all of a window) requires signed JavaScript, so a window won't move past the screen boundaries. In addition, windows have an enforced minimum size of 100 x 100 pixels; resizing a window to be smaller than this minimum requires signed JavaScript. You need the UniversalBrowserWrite privilege for this. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Examples
To make the current window 5 pixels narrower and 10 pixels taller than its current dimensions, use this statement:
self.resizeBy(-5,10); // relative positioning
See also
Window.resizeTo
resizeTo
Resizes an entire window to the specified pixel dimensions.
	Method of
	Window

Syntax
resizeTo(outerWidth, outerHeight)
Parameters
	outerWidth
	An integer representing the window's width in pixels.

	outerHeight
	An integer representing the window's height in pixels.

Description
This method changes the window's dimensions by setting its outerWidth and outerHeight properties. The upper left-hand corner remains anchored and the lower right-hand corner moves. resizeBy moves to the specified position. The origin of the axes is at absolute position (0,0); this is the upper left-hand corner of the display.
Security
Exceeding any of the boundaries of the screen (to hide some or all of a window) requires signed JavaScript, so a window won't move past the screen boundaries. In addition, windows have an enforced minimum size of 100 x 100 pixels; resizing a window to be smaller than this minimum requires signed JavaScript. You need the UniversalBrowserWrite privilege for this. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Examples
To make the window 225 pixels wide and 200 pixels tall, use this statement:
self.resizeTo(225,200); // absolute positioning
See also
Window.resizeBy
routeEvent
Passes a captured event along the normal event hierarchy.
	Method of
	Window

Syntax
routeEvent(event)
Parameters
	event
	Name of the event to be routed.

Description
If a subobject (document or layer) is also capturing the event, the event is sent to that object. Otherwise, it is sent to its original target.
routeEvent works in tandem with captureEvents, releaseEvents, and handleEvent. For more information, see "Events in Navigator 4.0".
scroll
Scrolls a window to a specified coordinate.
	Method of
	Window

Description
In Navigator 4.0, scroll is no longer used and has been replaced by scrollTo. scrollTo extends the capabilities of scroll. scroll remains for backward compatibility.
scrollBy
Scrolls the viewing area of a window by the specified amount.
	Method of
	Window

Syntax
scrollBy(horizontal, vertical)
Parameters
	horizontal
	The number of pixels by which to scroll the viewing area horizontally.

	vertical
	The number of pixels by which to scroll the viewing area vertically.

Description
This method scrolls the content in the window if portions that can't be seen exist outside of the window. scrollBy scrolls the window by adding or subtracting the specified number of pixels to the current scrolled location.
For this method to have an effect the visible property of Window.scrollbars must be true.
Examples
To scroll the current window 5 pixels towards the left and 30 pixels down from the current position, use this statement:
self.scrollBy(-5,30); // relative positioning
See also
Window.scrollTo
scrollTo
Scrolls the viewing area of the window so that the specified point becomes the top-left corner.
	Method of
	Window

Syntax
scrollTo(x-coordinate, y-coordinate)
Parameters
	x-coordinate
	An integer representing the x-coordinate of the viewing area in pixels.

	y-coordinate
	An integer representing the y-coordinate of the viewing area in pixels.

Description
scrollTo replaces scroll. scroll remains for backward compatibility.
The scrollTo method scrolls the content in the window if portions that can't be seen exist outside of the window. For this method to have an effect the visible property of Window.scrollbars must be true.
Examples
Example 1: Scroll the current viewing area. To scroll the current window to the leftmost boundary and 20 pixels down from the top of the window, use this statement:
self.scrollTo(0,20); // absolute positioning
Example 2: Scroll a different viewing area. The following code, which exists in one frame, scrolls the viewing area of a second frame. Two Text objects let the user specify the x and y coordinates. When the user clicks the Go button, the document in frame2 scrolls to the specified coordinates.
<SCRIPT>
function scrollIt(form) {
 var x = parseInt(form.x.value)
 var y = parseInt(form.y.value)
 parent.frame2.scrollTo(x, y)
}
</SCRIPT>
<BODY>
<FORM NAME="myForm">
<P>Specify the coordinates to scroll to:

Horizontal:
<INPUT TYPE="text" NAME=x VALUE="0" SIZE=4>

Vertical:
<INPUT TYPE="text" NAME=y VALUE="0" SIZE=4>

<INPUT TYPE="button" VALUE="Go"
 onClick="scrollIt(document.myForm)">
</FORM>
See also
Window.scrollBy
setInterval
Evaluates an expression or calls a function every time a specified number of milliseconds elapses, until canceled by a call to clearInterval.
	Method of
	Window

Syntax
setInterval(expression, msec)
setInterval(function, msec, arg1, ..., argN)
Parameters
	function
	Any function.

	expression
	A string containing a JavaScript expression. The expression must be quoted; otherwise, setInterval calls it immediately. For example, setInterval("calcnum(3, 2)", 25).

	msec
	A numeric value or numeric string, in millisecond units.

	arg1, ..., argn
	(Optional) The arguments, if any, passed to function.

Description
The timeouts continue to fire until the associated window or frame is destroyed or the interval is canceled using the clearInterval method.
See also
Window.clearInterval, Window.setTimeout
setTimeout
Evaluates an expression or calls a function once after a specified number of milliseconds elapses.
	Method of
	Window

Syntax
setTimeout(expression, msec)
setTimeout(function, msec, arg1, ..., argN)
Parameters
	expression
	A string containing a JavaScript expression. The expression must be quoted; otherwise, setTimeout calls it immediately. For example, setTimeout("calcnum(3, 2)", 25).

	msec
	A numeric value or numeric string, in millisecond units.

	function
	Any function.

	arg1, ..., argN
	(Optional) The arguments, if any, passed to function.

Description
The setTimeout method evaluates an expression or calls a function after a specified amount of time. It does not act repeatedly. For example, if a setTimeout method specifies five seconds, the expression is evaluated or the function is called after five seconds, not every five seconds. For repetitive timeouts, use the setInterval method.
setTimeout does not stall the script. The script continues immediately (not waiting for the timeout to expire). The call simply schedules an additional future event.
Examples
Example 1. The following example displays an alert message five seconds (5,000 milliseconds) after the user clicks a button. If the user clicks the second button before the alert message is displayed, the timeout is canceled and the alert does not display.
<SCRIPT LANGUAGE="JavaScript">
function displayAlert() {
 alert("5 seconds have elapsed since the button was clicked.")
}
</SCRIPT>
<BODY>
<FORM>
Click the button on the left for a reminder in 5 seconds;
click the button on the right to cancel the reminder before
it is displayed.
<P>
<INPUT TYPE="button" VALUE="5-second reminder"
 NAME="remind_button"
 onClick="timerID=setTimeout('displayAlert()',5000)">
<INPUT TYPE="button" VALUE="Clear the 5-second reminder"
 NAME="remind_disable_button"
 onClick="clearTimeout(timerID)">
</FORM>
</BODY>
Example 2. The following example displays the current time in a Text object. The showtime function, which is called recursively, uses the setTimeout method to update the time every second.
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--
var timerID = null
var timerRunning = false
function stopclock(){
 if(timerRunning)
 clearTimeout(timerID)
 timerRunning = false
}
function startclock(){
 // Make sure the clock is stopped
 stopclock()
 showtime()
}
function showtime(){
 var now = new Date()
 var hours = now.getHours()
 var minutes = now.getMinutes()
 var seconds = now.getSeconds()
 var timeValue = "" + ((hours > 12) ? hours - 12 : hours)
 timeValue += ((minutes < 10) ? ":0" : ":") + minutes
 timeValue += ((seconds < 10) ? ":0" : ":") + seconds
 timeValue += (hours >= 12) ? " P.M." : " A.M."
 document.clock.face.value = timeValue
 timerID = setTimeout("showtime()",1000)
 timerRunning = true
}
//-->
</SCRIPT>
</HEAD>
<BODY onLoad="startclock()">
<FORM NAME="clock" onSubmit="0">
 <INPUT TYPE="text" NAME="face" SIZE=12 VALUE ="">
</FORM>
</BODY>
See also
Window.clearTimeout, Window.setInterval
stop
Stops the current download.
	Method of
	Window

Syntax
stop()
Parameters
None
Definition
This method performs the same action as a user choosing the Stop button in the browser.

Chapter 7
Form
This chapter deals with the use of forms, which appear within a document to obtain input from the user.
Table 7.1 summarizes the objects in this chapter.
Table 7.1 Form objects
	Object
	Description

	Button
	A push button on an HTML form.

	Checkbox
	A checkbox on an HTML form.

	FileUpload
	A file upload element on an HTML form.

	Form
	Lets users input text and make choices from Form elements such as checkboxes, radio buttons, and selection lists.

	Hidden
	A Text object that is suppressed from form display on an HTML form.

	Option
	A Select object option.

	Password
	A text field on an HTML form that conceals its value by displaying asterisks (*).

	Radio
	A set of radio buttons on an HTML form.

	Reset
	A reset button on an HTML form.

	Select
	A selection list on an HTML form.

	Submit
	A submit button on an HTML form.

	Text
	A text input field on an HTML form.

	Textarea
	A multiline input field on an HTML form.

Button
A push button on an HTML form.
	Client-side object
	

Created by
The HTML INPUT tag, with "button" as the value of the TYPE attribute. For a given form, the JavaScript runtime engine creates appropriate Button objects and puts these objects in the elements array of the corresponding Form object. You access a Button object by indexing this array. You can index the array either by number or, if supplied, by using the value of the NAME attribute.
Event handlers
· onBlur
· onClick
· onFocus
· onMouseDown
· onMouseUp
Description
A Button object on a form looks as follows:
[image: button]
A Button object is a form element and must be defined within a FORM tag.
The Button object is a custom button that you can use to perform an action you define. The button executes the script specified by its onClick event handler.
Property Summary
	form
	Specifies the form containing the Button object.

	name
	Reflects the NAME attribute.

	type
	Reflects the TYPE attribute.

	value
	Reflects the VALUE attribute.

Method Summary
	blur
	Removes focus from the button.

	click
	Simulates a mouse-click on the button.

	focus
	Gives focus to the button.

	handleEvent
	Invokes the handler for the specified event.

Examples
The following example creates a button named calcButton. The text "Calculate" is displayed on the face of the button. When the button is clicked, the function calcFunction is called.
<INPUT TYPE="button" VALUE="Calculate" NAME="calcButton"
 onClick="calcFunction(this.form)">
See also
Form, Reset, Submit
Properties
form
An object reference specifying the form containing the button.
	Property of
	Button

	Read-only
	

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
Examples
Example 1. In the following example, the form myForm contains a Text object and a button. When the user clicks the button, the value of the Text object is set to the form's name. The button's onClick event handler uses this.form to refer to the parent form, myForm.
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"
 onClick="this.form.text1.value=this.form.name">
</FORM>
Example 2. The following example shows a form with several elements. When the user clicks button2, the function showElements displays an alert dialog box containing the names of each element on the form myForm.
function showElements(theForm) {
 str = "Form Elements of form " + theForm.name + ": \n "
 for (i = 0; i < theForm.length; i++)
 str += theForm.elements[i].name + "\n"
 alert(str)
}
</script>
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"
 onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="button" VALUE="Show Form Elements"
 onClick="showElements(this.form)">
</FORM>
The alert dialog box displays the following text:
JavaScript Alert:
Form Elements of form myForm:
text1
button1
button2
Example 3. The following example uses an object reference, rather than the this keyword, to refer to a form. The code returns a reference to myForm, which is a form containing myButton.
document.myForm.myButton.form
See also
Form
name
A string specifying the button's name.
	Property of
	Button

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The name property initially reflects the value of the NAME attribute. Changing the name property overrides this setting.
Do not confuse the name property with the label displayed on a button. The value property specifies the label for the button. The name property is not displayed on the screen; it is used to refer programmatically to the object.
If multiple objects on the same form have the same NAME attribute, an array of the given name is created automatically. Each element in the array represents an individual Form object. Elements are indexed in source order starting at 0. For example, if two Text elements and a Button element on the same form have their NAME attribute set to "myField", an array with the elements myField[0], myField[1], and myField[2] is created. You need to be aware of this situation in your code and know whether myField refers to a single element or to an array of elements.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
In the following example, the first statement creates a window called netscapeWin. The second statement displays the value "netscapeHomePage" in the Alert dialog box, because "netscapeHomePage" is the value of the windowName argument of netscapeWin.
netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)
See also
Button.value
type
For all Button objects, the value of the type property is "button". This property specifies the form element's type.
	Property of
	Button

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.
for (var i = 0; i < document.form1.elements.length; i++) {
 document.writeln("
type is " + document.form1.elements[i].type)
}
value
A string that reflects the button's VALUE attribute.
	Property of
	Button

	Read-only
	Mac and UNIX

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
This string is displayed on the face of the button.
The value property is read-only for Macintosh and UNIX systems. On Windows, you can change this property.
When a VALUE attribute is not specified in HTML, the value property is an empty string.
Do not confuse the value property with the name property. The name property is not displayed on the screen; it is used to refer programmatically to the objects.
Examples
The following function evaluates the value property of a group of buttons and displays it in the msgWindow window:
function valueGetter() {
 var msgWindow=window.open("")
 msgWindow.document.write("submitButton.value is " +
 document.valueTest.submitButton.value + "
")
 msgWindow.document.write("resetButton.value is " +
 document.valueTest.resetButton.value + "
")
 msgWindow.document.write("helpButton.value is " +
 document.valueTest.helpButton.value + "
")
 msgWindow.document.close()
}
This example displays the following values:
Query Submit
Reset
Help
The previous example assumes the buttons have been defined as follows:
<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="button" NAME="helpButton" VALUE="Help">
See also
Button.name
Methods
blur
Removes focus from the button.
	Method of
	Button

	Implemented in
	Navigator 2.0

Syntax
blur()
Parameters
None
Examples
The following example removes focus from the button element userButton:
userButton.blur()
This example assumes that the button is defined as
<INPUT TYPE="button" NAME="userButton">
See also
Button.focus
click
Simulates a mouse-click on the button, but does not trigger the button's onClick event handler.
	Method of
	Button

	Implemented in
	Navigator 2.0

Syntax
click()
Parameters
None.
Security
Navigator 4.0: Submitting a form to a mailto: or news: URL requires the UniversalSendMail privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
focus
Navigates to the button and gives it focus.
	Method of
	Button

	Implemented in
	Navigator 2.0

Syntax
focus()
Parameters
None.
See also
Button.blur
handleEvent
Invokes the handler for the specified event.
	Method of
	Button

	Implemented in
	Navigator 4.0

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the object has an event handler.

Checkbox
A checkbox on an HTML form. A checkbox is a toggle switch that lets the user set a value on or off.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added type property; added onBlur and onFocus event handlers; added blur and focus methods.
Navigator 4.0: added handleEvent method.

Created by
The HTML INPUT tag, with "checkbox" as the value of the TYPE attribute. For a given form, the JavaScript runtime engine creates appropriate Checkbox objects and puts these objects in the elements array of the corresponding Form object. You access a Checkbox object by indexing this array. You can index the array either by number or, if supplied, by using the value of the NAME attribute.
Event handlers
· onBlur
· onClick
· onFocus
Description
A Checkbox object on a form looks as follows:
[image: checkbox]
A Checkbox object is a form element and must be defined within a FORM tag.
Use the checked property to specify whether the checkbox is currently checked. Use the defaultChecked property to specify whether the checkbox is checked when the form is loaded or reset.
Property Summary
	checked
	Boolean property that reflects the current state of the checkbox.

	defaultChecked
	Boolean property that reflects the CHECKED attribute.

	form
	Specifies the form containing the Checkbox object.

	name
	Reflects the NAME attribute.

	type
	Reflects the TYPE attribute.

	value
	Reflects the TYPE attribute.

Method Summary
	blur
	Removes focus from the checkbox.

	click
	Simulates a mouse-click on the checkbox.

	focus
	Gives focus to the checkbox.

	handleEvent
	Invokes the handler for the specified event.

Examples
Example 1. The following example displays a group of four checkboxes that all appear checked by default:
Specify your music preferences (check all that apply):

<INPUT TYPE="checkbox" NAME="musicpref_rnb" CHECKED> R&B

<INPUT TYPE="checkbox" NAME="musicpref_jazz" CHECKED> Jazz

<INPUT TYPE="checkbox" NAME="musicpref_blues" CHECKED> Blues

<INPUT TYPE="checkbox" NAME="musicpref_newage" CHECKED> New Age
Example 2. The following example contains a form with three text boxes and one checkbox. The user can use the checkbox to choose whether the text fields are converted to uppercase. Each text field has an onChange event handler that converts the field value to uppercase if the checkbox is checked. The checkbox has an onClick event handler that converts all fields to uppercase when the user checks the checkbox.
<HTML>
<HEAD>
<TITLE>Checkbox object example</TITLE>
</HEAD>
<SCRIPT>
function convertField(field) {
 if (document.form1.convertUpper.checked) {
 field.value = field.value.toUpperCase()}
}
function convertAllFields() {
 document.form1.lastName.value = document.form1.lastName.value.toUpperCase()
 document.form1.firstName.value = document.form1.firstName.value.toUpperCase()
 document.form1.cityName.value = document.form1.cityName.value.toUpperCase()
}
</SCRIPT>
<BODY>
<FORM NAME="form1">
Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20 onChange="convertField(this)">

First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20 onChange="convertField(this)">

City:
<INPUT TYPE="text" NAME="cityName" SIZE=20 onChange="convertField(this)">
<P><INPUT TYPE="checkBox" NAME="convertUpper"
 onClick="if (this.checked) {convertAllFields()}"
 > Convert fields to upper case
</FORM>
</BODY>
</HTML>
See also
Form, Radio
Properties
checked
A Boolean value specifying the selection state of the checkbox.
	Property of
	Checkbox

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
If a checkbox button is selected, the value of its checked property is true; otherwise, it is false.
You can set the checked property at any time. The display of the checkbox button updates immediately when you set the checked property.
See also
Checkbox.defaultChecked
defaultChecked
A Boolean value indicating the default selection state of a checkbox button.
	Property of
	Checkbox

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
If a checkbox is selected by default, the value of the defaultChecked property is true; otherwise, it is false. defaultChecked initially reflects whether the CHECKED attribute is used within an INPUT tag; however, setting defaultChecked overrides the CHECKED attribute.
You can set the defaultChecked property at any time. The display of the checkbox does not update when you set the defaultChecked property, only when you set the checked property.
See also
Checkbox.checked
form
An object reference specifying the form containing the checkbox.
	Property of
	Checkbox

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
See also
Form
name
A string specifying the checkbox's name.
	Property of
	Checkbox

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
If multiple objects on the same form have the same NAME attribute, an array of the given name is created automatically. Each element in the array represents an individual Form object. Elements are indexed in source order starting at 0. For example, if two Text elements and a Button element on the same form have their NAME attribute set to "myField", an array with the elements myField[0], myField[1], and myField[2] is created. You need to be aware of this situation in your code and know whether myField refers to a single element or to an array of elements.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
type
For all Checkbox objects, the value of the type property is "checkbox". This property specifies the form element's type.
	Property of
	Checkbox

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.
for (var i = 0; i < document.form1.elements.length; i++) {
 document.writeln("
type is " + document.form1.elements[i].type)
}
value
A string that reflects the VALUE attribute of the checkbox.
	Property of
	Checkbox

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
See also
Checkbox.checked, Checkbox.defaultChecked
Methods
blur
Removes focus from the checkbox.
	Method of
	Checkbox

	Implemented in
	Navigator 2.0

Syntax
blur()
Parameters
None
See also
Checkbox.focus
click
Simulates a mouse-click on the checkbox, but does not trigger its onClick event handler. The method checks the checkbox and sets toggles its value.
	Method of
	Checkbox

	Implemented in
	Navigator 2.0

Syntax
click()
Parameters
None.
Examples
The following example toggles the selection status of the newAge checkbox on the musicForm form:
document.musicForm.newAge.click()
focus
Gives focus to the checkbox.
	Method of
	Checkbox

	Implemented in
	Navigator 2.0

Syntax
focus()
Parameters
None
Description
Use the focus method to navigate to a the checkbox and give it focus. The user can then toggle the state of the checkbox.
See also
Checkbox.blur
handleEvent
Invokes the handler for the specified event.
	Method of
	Checkbox

	Implemented in
	Navigator 4.0

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the specified object has an event handler.

FileUpload
A file upload element on an HTML form. A file upload element lets the user supply a file as input.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added type property
Navigator 4.0: added handleEvent method.

Created by
The HTML INPUT tag, with "file" as the value of the TYPE attribute. For a given form, the JavaScript runtime engine creates appropriate FileUpload objects and puts these objects in the elements array of the corresponding Form object. You access a FileUpload object by indexing this array. You can index the array either by number or, if supplied, by using the value of the NAME attribute.
Event handlers
· onBlur
· onChange
· onFocus
Description
A FileUpload object on a form looks as follows:
[image: fileupl]
A FileUpload object is a form element and must be defined within a FORM tag.
Property Summary
	form
	Specifies the form containing the FileUpload object.

	name
	Reflects the NAME attribute.

	type
	Reflects the TYPE attribute.

	value
	Reflects the current value of the file upload element's field; this corresponds to the name of the file to upload.

Method Summary
	blur
	Removes focus from the object.

	focus
	Gives focus to the object.

	handleEvent
	Invokes the handler for the specified event.

	select
	Selects the input area of the file upload field.

Examples
The following example places a FileUpload object on a form and provides two buttons that let the user display current values of the name and value properties.
<FORM NAME="form1">
File to send: <INPUT TYPE="file" NAME="myUploadObject">
<P>Get properties

<INPUT TYPE="button" VALUE="name"
 onClick="alert('name: ' + document.form1.myUploadObject.name)">
<INPUT TYPE="button" VALUE="value"
 onClick="alert('value: ' + document.form1.myUploadObject.value)">

</FORM>
See also
Text
Properties
form
An object reference specifying the form containing the object.
	Property of
	FileUpload

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
name
A string specifying the name of this object.
	Property of
	FileUpload

	Read-only
	

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The name property initially reflects the value of the NAME attribute. The name property is not displayed on-screen; it is used to refer to the objects programmatically.
If multiple objects on the same form have the same NAME attribute, an array of the given name is created automatically. Each element in the array represents an individual Form object. Elements are indexed in source order starting at 0. For example, if two Text elements and a FileUpload element on the same form have their NAME attribute set to "myField", an array with the elements myField[0], myField[1], and myField[2] is created. You need to be aware of this situation in your code and know whether myField refers to a single element or to an array of elements.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
type
For all FileUpload objects, the value of the type property is "file". This property specifies the form element's type.
	Property of
	FileUpload

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.
for (var i = 0; i < document.form1.elements.length; i++) {
 document.writeln("
type is " + document.form1.elements[i].type)
}
value
A string that reflects the VALUE attribute of the object.
	Property of
	FileUpload

	Read-only
	

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Navigator 4.0: Setting a file upload widget requires the UniversalFileRead privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Description
Use the value property to obtain the file name that the user typed into a FileUpload object.
Methods
blur
Removes focus from the object.
	Method of
	FileUpload

	Implemented in
	Navigator 2.0

Syntax
blur()
Parameters
None
See also
FileUpload.focus, FileUpload.select
focus
Navigates to the FileUpload field and give it focus.
	Method of
	FileUpload

	Implemented in
	Navigator 2.0

Syntax
focus()
Parameters
None
See also
FileUpload.blur, FileUpload.select
handleEvent
Invokes the handler for the specified event.
Syntax
handleEvent(event)

	Method of
	FileUpload

	Implemented in
	Navigator 4.0

Parameters
	event
	The name of an event for which the object has an event handler.

Description
For information on handling events, see "General Information about Events".
select
Selects the input area of the file upload field.
	Method of
	FileUpload

	Implemented in
	Navigator 2.0

Syntax
select()
Parameters
None
Description
Use the select method to highlight the input area of a file upload field. You can use the select method with the focus method to highlight a field and position the cursor for a user response. This makes it easy for the user to replace all the text in the field.
Form
Lets users input text and make choices from Form elements such as checkboxes, radio buttons, and selection lists. You can also use a form to post data to a server.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added reset method.
Navigator 4.0: added handleEvent method.

Created by
The HTML FORM tag. The JavaScript runtime engine creates a Form object for each FORM tag in the document. You access FORM objects through the document.forms property and through named properties of that object.
To define a form, use standard HTML syntax with the addition of JavaScript event handlers. If you supply a value for the NAME attribute, you can use that value to index into the forms array. In addition, the associated document object has a named property for each named form.
Event handlers
· onReset
· onSubmit
Description
Each form in a document is a distinct object. You can refer to a form's elements in your code by using the element's name (from the NAME attribute) or the Form.elements array. The elements array contains an entry for each element (such as a Checkbox, Radio, or Text object) in a form.
If multiple objects on the same form have the same NAME attribute, an array of the given name is created automatically. Each element in the array represents an individual Form object. Elements are indexed in source order starting at 0. For example, if two Text elements and a Textarea element on the same form have their NAME attribute set to "myField", an array with the elements myField[0], myField[1], and myField[2] is created. You need to be aware of this situation in your code and know whether myField refers to a single element or to an array of elements.
Property Summary
	action
	Reflects the ACTION attribute.

	elements
	An array reflecting all the elements in a form.

	encoding
	Reflects the ENCTYPE attribute.

	length
	Reflects the number of elements on a form.

	method
	Reflects the METHOD attribute.

	name
	Reflects the NAME attribute.

	target
	Reflects the TARGET attribute.

Method Summary
	handleEvent
	Invokes the handler for the specified event.

	reset
	Simulates a mouse click on a reset button for the calling form.

	submit
	Submits a form.

Examples
Example 1: Named form. The following example creates a form called myForm that contains text fields for first name and last name. The form also contains two buttons that change the names to all uppercase or all lowercase. The function setCase shows how to refer to the form by its name.
<HTML>
<HEAD>
<TITLE>Form object example</TITLE>
</HEAD>
<SCRIPT>
function setCase (caseSpec){
if (caseSpec == "upper") {
 document.myForm.firstName.value=document.myForm.firstName.value.toUpperCase()
 document.myForm.lastName.value=document.myForm.lastName.value.toUpperCase()}
else {
 document.myForm.firstName.value=document.myForm.firstName.value.toLowerCase()
 document.myForm.lastName.value=document.myForm.lastName.value.toLowerCase()}
}
</SCRIPT>
<BODY>
<FORM NAME="myForm">
First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20>

Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20>
<P><INPUT TYPE="button" VALUE="Names to uppercase" NAME="upperButton"
 onClick="setCase('upper')">
<INPUT TYPE="button" VALUE="Names to lowercase" NAME="lowerButton"
 onClick="setCase('lower')">
</FORM>
</BODY>
</HTML>
Example 2: forms array. The onLoad event handler in the following example displays the name of the first form in an Alert dialog box.
<BODY onLoad="alert('You are looking at the ' + document.forms[0] + ' form!')">
If the form name is musicType, the alert displays the following message:
You are looking at the <object musicType> form!
Example 3: onSubmit event handler. The following example shows an onSubmit event handler that determines whether to submit a form. The form contains one Text object where the user enters three characters. onSubmit calls a function, checkData, that returns true if there are 3 characters; otherwise, it returns false. Notice that the form's onSubmit event handler, not the submit button's onClick event handler, calls the checkData function. Also, onSubmit contains a return statement that returns the value obtained with the function call.
<HTML>
<HEAD>
<TITLE>Form object/onSubmit event handler example</TITLE>
<TITLE>Form object example</TITLE>
</HEAD>
<SCRIPT>
var dataOK=false
function checkData (){
if (document.myForm.threeChar.value.length == 3) {
 return true}
 else {
 alert("Enter exactly three characters. " + document.myForm.threeChar.value +
 " is not valid.")
 return false}
}
</SCRIPT>
<BODY>
<FORM NAME="myForm" onSubmit="return checkData()">
Enter 3 characters:
<INPUT TYPE="text" NAME="threeChar" SIZE=3>
<P><INPUT TYPE="submit" VALUE="Done" NAME="submit1"
 onClick="document.myForm.threeChar.value=document.myForm.threeChar.value.toUpperCase()">
</FORM>
</BODY>
</HTML>
Example 4: submit method. The following example is similar to the previous one, except it submits the form using the submit method instead of a Submit object. The form's onSubmit event handler does not prevent the form from being submitted. The form uses a button's onClick event handler to call the checkData function. If the value is valid, the checkData function submits the form by calling the form's submit method.
<HTML>
<HEAD>
<TITLE>Form object/submit method example</TITLE>
</HEAD>
<SCRIPT>
var dataOK=false
function checkData (){
if (document.myForm.threeChar.value.length == 3) {
 document.myForm.submit()}
 else {
 alert("Enter exactly three characters. " + document.myForm.threeChar.value +
 " is not valid.")
 return false}
}
</SCRIPT>
<BODY>
<FORM NAME="myForm" onSubmit="alert('Form is being submitted.')">
Enter 3 characters:
<INPUT TYPE="text" NAME="threeChar" SIZE=3>
<P><INPUT TYPE="button" VALUE="Done" NAME="button1"
 onClick="checkData()">
</FORM>
</BODY>
</HTML>
See also
Button, Checkbox, FileUpload, Hidden, Password, Radio, Reset, Select, Submit, Text, Textarea.
Properties
action
A string specifying a destination URL for form data that is submitted
	Property of
	Form

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Navigator 4.0: Submitting a form to a mailto: or news: URL requires the UniversalSendMail privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Description
The action property is a reflection of the ACTION attribute of the FORM tag. Each section of a URL contains different information. See Location for a description of the URL components.
Examples
The following example sets the action property of the musicForm form to the value of the variable urlName:
document.musicForm.action=urlName
See also
Form.encoding, Form.method, Form.target
elements
An array of objects corresponding to form elements (such as checkbox, radio, and Text objects) in source order.
	Property of
	Form

	Read-only
	

	Implemented in
	Navigator 2.0

Description
You can refer to a form's elements in your code by using the elements array. This array contains an entry for each object (Button, Checkbox, FileUpload, Hidden, Password, Radio, Reset, Select, Submit, Text, or Textarea object) in a form in source order. Each radio button in a Radio object appears as a separate element in the elements array. For example, if a form called myForm has a text field and two checkboxes, you can refer to these elements myForm.elements[0], myForm.elements[1], and myForm.elements[2].
Although you can also refer to a form's elements by using the element's name (from the NAME attribute), the elements array provides a way to refer to Form objects programmatically without using their names. For example, if the first object on the userInfo form is the userName Text object, you can evaluate it in either of the following ways:
userInfo.userName.value
userInfo.elements[0].value
The value of each element in the elements array is the full HTML statement for the object.
Examples
See the examples for Frame.
encoding
A string specifying the MIME encoding of the form.
	Property of
	Form

	Implemented in
	Navigator 2.0

Description
The encoding property initially reflects the ENCTYPE attribute of the FORM tag; however, setting encoding overrides the ENCTYPE attribute.
Examples
The following function returns the value of the encoding property of musicForm:
function getEncoding() {
 return document.musicForm.encoding
}
See also
Form.action, Form.method, Form.target
length
The number of elements in the form.
	Property of
	Form

	Read-only
	

	Implemented in
	Navigator 2.0

Description
The form.length property tells you how many elements are in the form. You can get the same information using form.elements.length.
method
A string specifying how form field input information is sent to the server.
	Property of
	Form

	Implemented in
	Navigator 2.0

Description
The method property is a reflection of the METHOD attribute of the FORM tag. The method property should evaluate to either "get" or "post".
Examples
The following function returns the value of the musicForm method property:
function getMethod() {
 return document.musicForm.method
}
See also
Form.action, Form.encoding, Form.target
name
A string specifying the name of the form.
	Property of
	Form

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The name property initially reflects the value of the NAME attribute. Changing the name property overrides this setting.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
target
A string specifying the name of the window that responses go to after a form has been submitted.
	Property of
	Form

	Implemented in
	Navigator 2.0

Description
The target property initially reflects the TARGET attribute of the A, AREA, and FORM tags; however, setting target overrides these attributes.
You can set target using a string, if the string represents a window name. The target property cannot be assigned the value of a JavaScript expression or variable.
Examples
The following example specifies that responses to the musicInfo form are displayed in the msgWindow window:
document.musicInfo.target="msgWindow"
See also
Form.action, Form.encoding, Form.method
Methods
handleEvent
Invokes the handler for the specified event.
	Method of
	Form

	Implemented in
	Navigator 4.0

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the specified object has an event handler.

Description
For information on handling events, see "General Information about Events".
reset
Simulates a mouse click on a reset button for the calling form.
	Method of
	Form

	Implemented in
	Navigator 3.0

Syntax
reset()
Parameters
None
Description
The reset method restores a form element's default values. A reset button does not need to be defined for the form.
Examples
The following example displays a Text object in which the user is to type "CA" or "AZ". The Text object's onChange event handler calls a function that executes the form's reset method if the user provides incorrect input. When the reset method executes, defaults are restored and the form's onReset event handler displays a message.
<SCRIPT>
function verifyInput(textObject) {
 if (textObject.value == 'CA' || textObject.value == 'AZ') {
 alert('Nice input')
 }
 else { document.myForm.reset() }
}
</SCRIPT>
<FORM NAME="myForm" onReset="alert('Please enter CA or AZ.')">
Enter CA or AZ:
<INPUT TYPE="text" NAME="state" SIZE="2" onChange=verifyInput(this)><P>
</FORM>
See also
onReset, Reset
submit
Submits a form.
	Method of
	Form

	Implemented in
	Navigator 2.0

Syntax
submit()
Parameters
None
Security
Navigator 3.0: The submit method fails without notice if the form's action is a mailto:, news:, or snews: URL. Users can submit forms with such URLs by clicking a submit button, but a confirming dialog will tell them that they are about to give away private or sensitive information.
Navigator 4.0: Submitting a form to a mailto: or news: URL requires the UniversalSendMail privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Description
The submit method submits the specified form. It performs the same action as a submit button.
Use the submit method to send data back to an HTTP server. The submit method returns the data using either "get" or "post," as specified in Form.method.
Examples
The following example submits a form called musicChoice:
document.musicChoice.submit()
If musicChoice is the first form created, you also can submit it as follows:
document.forms[0].submit()
Hidden
A Text object that is suppressed from form display on an HTML form. A Hidden object is used for passing name/value pairs when a form submits.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added type property

Created by
The HTML INPUT tag, with "hidden" as the value of the TYPE attribute. For a given form, the JavaScript runtime engine creates appropriate Hidden objects and puts these objects in the elements array of the corresponding Form object. You access a Hidden object by indexing this array. You can index the array either by number or, if supplied, by using the value of the NAME attribute.
Description
A Hidden object is a form element and must be defined within a FORM tag.
A Hidden object cannot be seen or modified by an end user, but you can programmatically change the value of the object by changing its value property. You can use Hidden objects for client/server communication.
Property Summary
	form
	Specifies the form containing the Hidden object.

	name
	Reflects the NAME attribute.

	type
	Reflects the TYPE attribute.

	value
	Reflects the current value of the Hidden object.

Examples
The following example uses a Hidden object to store the value of the last object the user clicked. The form contains a "Display hidden value" button that the user can click to display the value of the Hidden object in an Alert dialog box.
<HTML>
<HEAD>
<TITLE>Hidden object example</TITLE>
</HEAD>
<BODY>
Click some of these objects, then click the "Display value" button

to see the value of the last object clicked.
<FORM NAME="myForm">
<INPUT TYPE="hidden" NAME="hiddenObject" VALUE="None">
<P>
<INPUT TYPE="button" VALUE="Click me" NAME="button1"
 onClick="document.myForm.hiddenObject.value=this.value">
<P>
<INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"
 onClick="document.myForm.hiddenObject.value=this.value"> Soul and R&B
<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz"
 onClick="document.myForm.hiddenObject.value=this.value"> Jazz
<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical"
 onClick="document.myForm.hiddenObject.value=this.value"> Classical
<P>
<SELECT NAME="music_type_single"
 onFocus="document.myForm.hiddenObject.value=this.options[this.selectedIndex].text">
 <OPTION SELECTED> Red <OPTION> Orange <OPTION> Yellow
</SELECT>
<P><INPUT TYPE="button" VALUE="Display hidden value" NAME="button2"
 onClick="alert('Last object clicked: ' + document.myForm.hiddenObject.value)">
</FORM>
</BODY>
</HTML>
See also
document.cookie
Properties
form
An object reference specifying the form containing this object.
	Method of
	Hidden

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
Examples
Example 1. In the following example, the form myForm contains a Hidden object and a button. When the user clicks the button, the value of the Hidden object is set to the form's name. The button's onClick event handler uses this.form to refer to the parent form, myForm.
<FORM NAME="myForm">
Form name:<INPUT TYPE="hidden" NAME="h1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Store Form Name"
 onClick="this.form.h1.value=this.form.name">
</FORM>
Example 2. The following example uses an object reference, rather than the this keyword, to refer to a form. The code returns a reference to myForm, which is a form containing myHiddenObject.
document.myForm.myHiddenObject.form
See also
Form
name
A string specifying the name of this object.
	Method of
	Hidden

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
type
For all Hidden objects, the value of the type property is "hidden". This property specifies the form element's type.
	Method of
	Hidden

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.
for (var i = 0; i < document.myForm.elements.length; i++) {
 document.writeln("
type is " + document.myForm.elements[i].type)
}
value
A string that reflects the VALUE attribute of the object.
	Method of
	Hidden

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Examples
The following function evaluates the value property of a group of buttons and displays it in the msgWindow window:
function valueGetter() {
 var msgWindow=window.open("")
 msgWindow.document.write("The submit button says " +
 document.valueTest.submitButton.value + "
")
 msgWindow.document.write("The reset button says " +
 document.valueTest.resetButton.value + "
")
 msgWindow.document.write("The hidden field says " +
 document.valueTest.hiddenField.value + "
")
 msgWindow.document.close()
}
This example displays the following values:
The submit button says Query Submit
The reset button says Reset
The hidden field says pipefish are cute.
The previous example assumes the buttons have been defined as follows:
<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="hidden" NAME="hiddenField" VALUE="pipefish are cute.">

Option
An option in a selection list.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added defaultSelected property; text property can be changed to change the text of an option

Created by
The Option constructor or the HTML OPTION tag. To create an Option object with its constructor:
new Option(text, value, defaultSelected, selected)
Once you've created an Option object, you can add it to a selection list using the Select.options array.
Parameters
	text
	(Optional) Specifies the text to display in the select list.

	value
	(Optional) Specifies a value that is returned to the server when the option is selected and the form is submitted.

	defaultSelected
	(Optional) Specifies whether the option is initially selected (true or false).

	selected
	(Optional) Specifies the current selection state of the option (true or false).

Property Summary
	defaultSelected
	Specifies the initial selection state of the option

	selected
	Specifies the current selection state of the option

	text
	Specifies the text for the option

	value
	Specifies the value that is returned to the server when the option is selected and the form is submitted

Description
Usually you work with Option objects in the context of a selection list (a Select object). When JavaScript creates a Select object for each SELECT tag in the document, it creates Option objects for the OPTION tags inside the SELECT tag and puts those objects in the options array of the Select object.
In addition, you can create new options using the Option constructor and add those to a selection list. After you create an option and add it to the Select object, you must refresh the document by using history.go(0). This statement must be last. When the document reloads, variables are lost if not saved in cookies or form element values.
You can use the Option.selected and Select.selectedIndex properties to change the selection state of an option.
· The Select.selectedIndex property is an integer specifying the index of the selected option. This is most useful for Select objects that are created without the MULTIPLE attribute. The following statement sets a Select object's selectedIndex property:
document.myForm.musicTypes.selectedIndex = i
· The Option.selected property is a Boolean value specifying the current selection state of the option in a Select object. If an option is selected, its selected property is true; otherwise it is false. This is more useful for Select objects that are created with the MULTIPLE attribute. The following statement sets an option's selected property to true:
document.myForm.musicTypes.options[i].selected = true
To change an option's text, use is Option.text property. For example, suppose a form has the following Select object:
<SELECT name="userChoice">
 <OPTION>Choice 1
 <OPTION>Choice 2
 <OPTION>Choice 3
</SELECT>
You can set the text of the ith item in the selection based on text entered in a text field named whatsNew as follows:
myform.userChoice.options[i].text = myform.whatsNew.value
You do not need to reload or refresh after changing an option's text.
Examples
The following example creates two Select objects, one with and one without the MULTIPLE attribute. No options are initially defined for either object. When the user clicks a button associated with the Select object, the populate function creates four options for the Select object and selects the first option.
<SCRIPT>
function populate(inForm) {
 colorArray = new Array("Red", "Blue", "Yellow", "Green")
 var option0 = new Option("Red", "color_red")
 var option1 = new Option("Blue", "color_blue")
 var option2 = new Option("Yellow", "color_yellow")
 var option3 = new Option("Green", "color_green")
 for (var i=0; i < 4; i++) {
 eval("inForm.selectTest.options[i]=option" + i)
 if (i==0) {
 inForm.selectTest.options[i].selected=true
 }
 }
 history.go(0)
}
</SCRIPT>

<H3>Select Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest"></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
<P>
</FORM>
<HR>
<H3>Select-Multiple Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest" multiple></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
</FORM>
Properties
defaultSelected
A Boolean value indicating the default selection state of an option in a selection list.
	Property of
	Option

	Implemented in
	Navigator 3.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
If an option is selected by default, the value of the defaultSelected property is true; otherwise, it is false. defaultSelected initially reflects whether the SELECTED attribute is used within an OPTION tag; however, setting defaultSelected overrides the SELECTED attribute.
You can set the defaultSelected property at any time. The display of the corresponding Select object does not update when you set the defaultSelected property of an option, only when you set the Option.selected or Select.selectedIndex properties.
A Select object created without the MULTIPLE attribute can have only one option selected by default. When you set defaultSelected in such an object, any previous default selections, including defaults set with the SELECTED attribute, are cleared. If you set defaultSelected in a Select object created with the MULTIPLE attribute, previous default selections are not affected.
Examples
In the following example, the restoreDefault function returns the musicType Select object to its default state. The for loop uses the options array to evaluate every option in the Select object. The if statement sets the selected property if defaultSelected is true.
function restoreDefault() {
 for (var i = 0; i < document.musicForm.musicType.length; i++) {
 if (document.musicForm.musicType.options[i].defaultSelected == true) {
 document.musicForm.musicType.options[i].selected=true
 }
 }
}
The previous example assumes that the Select object is similar to the following:
<SELECT NAME="musicType">
 <OPTION SELECTED> R&B
 <OPTION> Jazz
 <OPTION> Blues
 <OPTION> New Age
</SELECT>
See also
Option.selected, Select.selectedIndex
selected
A Boolean value indicating whether an option in a Select object is selected.
	Property of
	Option

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
If an option in a Select object is selected, the value of its selected property is true; otherwise, it is false. You can set the selected property at any time. The display of the associated Select object updates immediately when you set the selected property for one of its options.
In general, the Option.selected property is more useful than the Select.selectedIndex property for Select objects that are created with the MULTIPLE attribute. With the Option.selected property, you can evaluate every option in the Select.options array to determine multiple selections, and you can select individual options without clearing the selection of other options.
Examples
See the examples for defaultSelected.
See also
Option.defaultSelected, Select.selectedIndex
text
A string specifying the text of an option in a selection list.
	Property of
	Option

	Implemented in
	Navigator 2.0
Navigator 3.0: The text property can be changed to updated the selection option. In previous releases, you could set the text property but the new value was not reflected in the Select object.

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The text property initially reflects the text that follows an OPTION tag of a SELECT tag. You can set the text property at any time and the text displayed by the option in the selection list changes.
Examples
Example 1. In the following example, the getChoice function returns the value of the text property for the selected option. The for loop evaluates every option in the musicType Select object. The if statement finds the option that is selected.
function getChoice() {
 for (var i = 0; i < document.musicForm.musicType.length; i++) {
 if (document.musicForm.musicType.options[i].selected == true) {
 return document.musicForm.musicType.options[i].text
 }
 }
 return null
}
The previous example assumes that the Select object is similar to the following:
<SELECT NAME="musicType">
 <OPTION SELECTED> R&B
 <OPTION> Jazz
 <OPTION> Blues
 <OPTION> New Age
</SELECT>
Example 2. In the following form, the user can enter some text in the first text field and then enter a number between 0 and 2 (inclusive) in the second text field. When the user clicks the button, the text is substituted for the indicated option number and that option is selected.
[image: selectop]
The code for this example looks as follows:
<SCRIPT>
function updateList(theForm, i) {
 theForm.userChoice.options[i].text = theForm.whatsNew.value
 theForm.userChoice.options[i].selected = true
}
</SCRIPT>
<FORM>
<SELECT name="userChoice">
 <OPTION>Choice 1
 <OPTION>Choice 2
 <OPTION>Choice 3
</SELECT>

New text for the option: <INPUT TYPE="text" NAME="whatsNew">

Option to change (0, 1, or 2): <INPUT TYPE="text" NAME="idx">

<INPUT TYPE="button" VALUE="Change Selection"
onClick="updateList(this.form, this.form.idx.value)">
</FORM>
See also
getOptionValue
value
A string that reflects the VALUE attribute of the option.
	Property of
	Option

	Read-only
	

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
When a VALUE attribute is specified in HTML, the value property is a string that reflects it. When a VALUE attribute is not specified in HTML, the value property is the empty string. The value property is not displayed on the screen but is returned to the server if the option is selected.
Do not confuse the property with the selection state of the option or the text that is displayed next to it. The selected property determines the selection state of the object, and the defaultSelected property determines the default selection state. The text that is displayed is specified following the OPTION tag and corresponds to the text property.

Password
A text field on an HTML form that conceals its value by displaying asterisks (*). When the user enters text into the field, asterisks (*) hide entries from view.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added type property; added onBlur and onFocus event handlers
Navigator 4.0: added handleEvent method.

Created by
The HTML INPUT tag, with "password" as the value of the TYPE attribute. For a given form, the JavaScript runtime engine creates appropriate Password objects and puts these objects in the elements array of the corresponding Form object. You access a Password object by indexing this array. You can index the array either by number or, if supplied, by using the value of the NAME attribute.
Event handlers
· onBlur
· onFocus
Description
A Password object on a form looks as follows:
[image: password]
A Password object is a form element and must be defined within a FORM tag.
Security
Navigator 3.0: If a user interactively modifies the value in a password field, you cannot evaluate it accurately unless data tainting is enabled. See the JavaScript Guide.
Property Summary
	defaultValue
	Reflects the VALUE attribute.

	form
	Specifies the form containing the Password object.

	name
	Reflects the NAME attribute.

	type
	Reflects the TYPE attribute.

	value
	Reflects the current value of the Password object's field.

Method Summary
	blur
	Removes focus from the object.

	focus
	Gives focus to the object.

	handleEvent
	Invokes the handler for the specified event.

	select
	Selects the input area of the object.

Examples
The following example creates a Password object with no default value:
Password:
<INPUT TYPE="password" NAME="password" VALUE="" SIZE=25>
See also
Form, Text
Properties
defaultValue
A string indicating the default value of a Password object.
	Property of
	Password

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The initial value of defaultValue is null (for security reasons), regardless of the value of the VALUE attribute.
Setting defaultValue programmatically overrides the initial setting. If you programmatically set defaultValue for the Password object and then evaluate it, JavaScript returns the current value.
You can set the defaultValue property at any time. The display of the related object does not update when you set the defaultValue property, only when you set the value property.
See also
Password.value
form
An object reference specifying the form containing this object.
	Property of
	Password

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
name
A string specifying the name of this object.
	Property of
	Password

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The name property initially reflects the value of the NAME attribute. Changing the name property overrides this setting. The name property is not displayed on-screen; it is used to refer to the objects programmatically.
If multiple objects on the same form have the same NAME attribute, an array of the given name is created automatically. Each element in the array represents an individual Form object. Elements are indexed in source order starting at 0. For example, if two Text elements and a Password element on the same form have their NAME attribute set to "myField", an array with the elements myField[0], myField[1], and myField[2] is created. You need to be aware of this situation in your code and know whether myField refers to a single element or to an array of elements.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
type
For all Password objects, the value of the type property is "password". This property specifies the form element's type.
	Property of
	Password

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.
for (var i = 0; i < document.form1.elements.length; i++) {
 document.writeln("
type is " + document.form1.elements[i].type)
}
value
A string that initially reflects the VALUE attribute.
	Property of
	Password

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security". If you programmatically set the value property and then evaluate it, JavaScript returns the current value. If a user interactively modifies the value in the password field, you cannot evaluate it accurately unless data tainting is enabled. See the JavaScript Guide.
Description
This string is represented by asterisks in the Password object field. The value of this property changes when a user or a program modifies the field, but the value is always displayed as asterisks.
See also
Password.defaultValue
Methods
blur
Removes focus from the object.
	Method of
	Password

	Implemented in
	Navigator 2.0

Syntax
blur()
Parameters
None
Examples
The following example removes focus from the password element userPass:
userPass.blur()
This example assumes that the password is defined as
<INPUT TYPE="password" NAME="userPass">
See also
Password.focus, Password.select
focus
Gives focus to the password object.
	Method of
	Password

	Implemented in
	Navigator 2.0

Syntax
focus()
Parameters
None
Description
Use the focus method to navigate to the password field and give it focus. You can then either programmatically enter a value in the field or let the user enter a value.
Examples
In the following example, the checkPassword function confirms that a user has entered a valid password. If the password is not valid, the focus method returns focus to the Password object and the select method highlights it so the user can reenter the password.
function checkPassword(userPass) {
 if (badPassword) {
 alert("Please enter your password again.")
 userPass.focus()
 userPass.select()
 }
}
This example assumes that the Password object is defined as
<INPUT TYPE="password" NAME="userPass">
See also
Password.blur, Password.select
handleEvent
Invokes the handler for the specified event.
	Method of
	Password

	Implemented in
	Navigator 4.0

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the object has an event handler.

Description
For information on handling events, see "General Information about Events".
select
Selects the input area of the password field.
	Method of
	Password

	Implemented in
	Navigator 2.0

Syntax
select()
Parameters
None
Description
Use the select method to highlight the input area of the password field. You can use the select method with the focus method to highlight a field and position the cursor for a user response.
Examples
In the following example, the checkPassword function confirms that a user has entered a valid password. If the password is not valid, the select method highlights the password field and the focus method returns focus to it so the user can reenter the password.
function checkPassword(userPass) {
 if (badPassword) {
 alert("Please enter your password again.")
 userPass.focus()
 userPass.select()
 }
}
This example assumes that the password is defined as
<INPUT TYPE="password" NAME="userPass">
Radio
An individual radio button in a set of radio buttons on an HTML form. The user can use a set of radio buttons to choose one item from a list.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added type property; added blur and focus methods.
Navigator 4.0: added handleEvent method.

Created by
The HTML INPUT tag, with "radio" as the value of the TYPE attribute. All the radio buttons in a single group must have the same value for the NAME attribute. This allows them to be accessed as a single group.
For a given form, the JavaScript runtime engine creates an individual Radio object for each radio button in that form. It puts in a single array all the Radio objects that have the same value for the NAME attribute. It puts that array in the elements array of the corresponding Form object. If a single form has multiple sets of radio buttons, the elements array has multiple Radio objects.
You access a set of buttons by accessing the Form.elements array (either by number or by using the value of the NAME attribute). To access the individual radio buttons in that set, you use the returned object array. For example, if your document has a form called emp with a set of radio buttons whose NAME attribute is "dept", you would access the individual buttons as document.emp.dept[0], document.emp.dept[1], and so on.
Event handlers
· onBlur
· onClick
· onFocus
Description
A Radio object on a form looks as follows:
[image: radio]
A Radio object is a form element and must be defined within a FORM tag.
Property Summary
	checked
	Lets you programmatically select a radio button (property of the individual button).

	defaultChecked
	Reflects the CHECKED attribute (property of the individual button).

	form
	Specifies the form containing the Radio object (property of the array of buttons).

	name
	Reflects the NAME attribute (property of the array of buttons).

	type
	Reflects the TYPE attribute (property of the array of buttons).

	value
	Reflects the VALUE attribute (property of the array of buttons).

Method Summary
	blur
	Removes focus from the radio button.

	click
	Simulates a mouse-click on the radio button.

	focus
	Gives focus to the radio button.

	handleEvent
	Invokes the handler for the specified event.

Examples
Example 1. The following example defines a radio button group to choose among three music catalogs. Each radio button is given the same name, NAME="musicChoice", forming a group of buttons for which only one choice can be selected. The example also defines a text field that defaults to what was chosen via the radio buttons but that allows the user to type a nonstandard catalog name as well. The onClick event handler sets the catalog name input field when the user clicks a radio button.
<INPUT TYPE="text" NAME="catalog" SIZE="20">
<INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"
 onClick="musicForm.catalog.value = 'soul-and-r&b'"> Soul and R&B
<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz"
 onClick="musicForm.catalog.value = 'jazz'"> Jazz
<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical"
 onClick="musicForm.catalog.value = 'classical'"> Classical
Example 2. The following example contains a form with three text boxes and three radio buttons. The radio buttons let the user choose whether the text fields are converted to uppercase or lowercase, or not converted at all. Each text field has an onChange event handler that converts the field value depending on which radio button is checked. The radio buttons for uppercase and lowercase have onClick event handlers that convert all fields when the user clicks the radio button.
<HTML>
<HEAD>
<TITLE>Radio object example</TITLE>
</HEAD>
<SCRIPT>
function convertField(field) {
 if (document.form1.conversion[0].checked) {
 field.value = field.value.toUpperCase()}
 else {
 if (document.form1.conversion[1].checked) {
 field.value = field.value.toLowerCase()}
 }
}
function convertAllFields(caseChange) {
 if (caseChange=="upper") {
 document.form1.lastName.value = document.form1.lastName.value.toUpperCase()
 document.form1.firstName.value = document.form1.firstName.value.toUpperCase()
 document.form1.cityName.value = document.form1.cityName.value.toUpperCase()}
 else {
 document.form1.lastName.value = document.form1.lastName.value.toLowerCase()
 document.form1.firstName.value = document.form1.firstName.value.toLowerCase()
 document.form1.cityName.value = document.form1.cityName.value.toLowerCase()
 }
}
</SCRIPT>
<BODY>
<FORM NAME="form1">
Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20 onChange="convertField(this)">

First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20 onChange="convertField(this)">

City:
<INPUT TYPE="text" NAME="cityName" SIZE=20 onChange="convertField(this)">
<P>Convert values to:

<INPUT TYPE="radio" NAME="conversion" VALUE="upper"
 onClick="if (this.checked) {convertAllFields('upper')}"> Upper case

<INPUT TYPE="radio" NAME="conversion" VALUE="lower"
 onClick="if (this.checked) {convertAllFields('lower')}"> Lower case

<INPUT TYPE="radio" NAME="conversion" VALUE="noChange"> No conversion
</FORM>
</BODY>
</HTML>
See also the example for Link.
See also
Checkbox, Form, Select
Properties
checked
A Boolean value specifying the selection state of a radio button.
	Property of
	Radio

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
If a radio button is selected, the value of its checked property is true; otherwise, it is false. You can set the checked property at any time. The display of the radio button updates immediately when you set the checked property.
At any given time, only one button in a set of radio buttons can be checked. When you set the checked property for one radio button in a group to true, that property for all other buttons in the group becomes false.
Examples
The following example examines an array of radio buttons called musicType on the musicForm form to determine which button is selected. The VALUE attribute of the selected button is assigned to the checkedButton variable.
function stateChecker() {
 var checkedButton = ""
 for (var i in document.musicForm.musicType) {
 if (document.musicForm.musicType[i].checked=="1") {
 checkedButton=document.musicForm.musicType[i].value
 }
 }
}
See also
Radio.defaultChecked
defaultChecked
A Boolean value indicating the default selection state of a radio button.
	Property of
	Radio

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
If a radio button is selected by default, the value of the defaultChecked property is true; otherwise, it is false. defaultChecked initially reflects whether the CHECKED attribute is used within an INPUT tag; however, setting defaultChecked overrides the CHECKED attribute.
Unlike for the checked property, changing the value of defaultChecked for one button in a radio group does not change its value for the other buttons in the group.
You can set the defaultChecked property at any time. The display of the radio button does not update when you set the defaultChecked property, only when you set the checked property.
Examples
The following example resets an array of radio buttons called musicType on the musicForm form to the default selection state:
function radioResetter() {
 var i=""
 for (i in document.musicForm.musicType) {
 if (document.musicForm.musicType[i].defaultChecked==true) {
 document.musicForm.musicType[i].checked=true
 }
 }
}
See also
Radio.checked
form
An object reference specifying the form containing the radio button.
	Property of
	Radio

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
name
A string specifying the name of the set of radio buttons with which this button is associated.
	Property of
	Radio

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The name property initially reflects the value of the NAME attribute. Changing the name property overrides this setting.
All radio buttons that have the same value for their name property are in the same group and are treated together. If you change the name of a single radio button, you change which group of buttons it belongs to.
Do not confuse the name property with the label displayed on a Button. The value property specifies the label for the button. The name property is not displayed onscreen; it is used to refer programmatically to the button.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
type
For all Radio objects, the value of the type property is "radio". This property specifies the form element's type.
	Property of
	Radio

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.
for (var i = 0; i < document.form1.elements.length; i++) {
 document.writeln("
type is " + document.form1.elements[i].type)
}
value
A string that reflects the VALUE attribute of the radio button.
	Property of
	Radio

	Read-only
	

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
When a VALUE attribute is specified in HTML, the value property is a string that reflects it. When a VALUE attribute is not specified in HTML, the value property is a string that evaluates to "on". The value property is not displayed on the screen but is returned to the server if the radio button or checkbox is selected.
Do not confuse the property with the selection state of the radio button or the text that is displayed next to the button. The checked property determines the selection state of the object, and the defaultChecked property determines the default selection state. The text that is displayed is specified following the INPUT tag.
Examples
The following function evaluates the value property of a group of radio buttons and displays it in the msgWindow window:
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < document.valueTest.radioObj.length; i++) {
 msgWindow.document.write
 ("The value of radioObj[" + i + "] is " +
 document.valueTest.radioObj[i].value +"
")
 }
 msgWindow.document.close()
}
This example displays the following values:
on
on
on
on
The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="radio" NAME="radioObj">R&B

<INPUT TYPE="radio" NAME="radioObj" CHECKED>Soul

<INPUT TYPE="radio" NAME="radioObj">Rock and Roll

<INPUT TYPE="radio" NAME="radioObj">Blues
See also
Radio.checked, Radio.defaultChecked
Methods
blur
Removes focus from the radio button.
	Method of
	Radio

	Implemented in
	Navigator 2.0

Syntax
blur()
Parameters
None
See also
Radio.focus
click
Simulates a mouse-click on the radio button, but does not trigger the button's onClick event handler.
	Method of
	Radio

	Implemented in
	Navigator 2.0

Syntax
click()
Parameters
None
Examples
The following example toggles the selection status of the first radio button in the musicType Radio object on the musicForm form:
document.musicForm.musicType[0].click()
The following example toggles the selection status of the newAge checkbox on the musicForm form:
document.musicForm.newAge.click()
focus
Gives focus to the radio button.
	Method of
	Radio

	Implemented in
	Navigator 2.0

Syntax
focus()
Parameters
None
Description
Use the focus method to navigate to the radio button and give it focus. The user can then easily toggle that button.
See also
Radio.blur
handleEvent
Invokes the handler for the specified event.
	Method of
	Radio

	Implemented in
	Navigator 4.0

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the specified object has an event handler.

Reset
A reset button on an HTML form. A reset button resets all elements in a form to their defaults.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added type property; added onBlur and onFocus event handlers; added blur and focus methods
Navigator 4.0: added handleEvent method.

Created by
The HTML INPUT tag, with "reset" as the value of the TYPE attribute. For a given form, the JavaScript runtime engine creates an appropriate Reset object and puts it in the elements array of the corresponding Form object. You access a Reset object by indexing this array. You can index the array either by number or, if supplied, by using the value of the NAME attribute.
Event handlers
· onBlur
· onClick
· onFocus
Description
A Reset object on a form looks as follows:
[image: reset]
A Reset object is a form element and must be defined within a FORM tag.
The reset button's onClick event handler cannot prevent a form from being reset; once the button is clicked, the reset cannot be canceled.
Property Summary
	form
	Specifies the form containing the Reset object.

	name
	Reflects the NAME attribute.

	type
	Reflects the TYPE attribute.

	value
	Reflects the VALUE attribute.

Method Summary
	blur
	Removes focus from the reset button.

	click
	Simulates a mouse-click on the reset button.

	focus
	Gives focus to the reset button.

	handleEvent
	Invokes the handler for the specified event.

Examples
Example 1. The following example displays a Text object with the default value "CA" and a reset button with the text "Clear Form" displayed on its face. If the user types a state abbreviation in the Text object and then clicks the Clear Form button, the original value of "CA" is restored.
State: <INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2">
<P><INPUT TYPE="reset" VALUE="Clear Form">
Example 2. The following example displays two Text objects, a Select object, and three radio buttons; all of these objects have default values. The form also has a reset button with the text "Defaults" on its face. If the user changes the value of any of the objects and then clicks the Defaults button, the original values are restored.
<HTML>
<HEAD>
<TITLE>Reset object example</TITLE>
</HEAD>
<BODY>
<FORM NAME="form1">

City: <INPUT TYPE="text" NAME="city" VALUE="Santa Cruz" SIZE="20">
State: <INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2">
<P><SELECT NAME="colorChoice">
 <OPTION SELECTED> Blue
 <OPTION> Yellow
 <OPTION> Green
 <OPTION> Red
</SELECT>
<P><INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"
 CHECKED> Soul and R&B

<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz">
 Jazz

<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical">
 Classical
<P><INPUT TYPE="reset" VALUE="Defaults" NAME="reset1">
</FORM>
</BODY>
</HTML>
See also
Button, Form, onReset, Form.reset, Submit
Properties
form
An object reference specifying the form containing the reset button.
	Property of
	Reset

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
See also
Form
name
A string specifying the name of the reset button.
	Property of
	Reset

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The value of the name property initially reflects the value of the NAME attribute. Changing the name property overrides this setting.
Do not confuse the name property with the label displayed on the reset button. The value property specifies the label for this button. The name property is not displayed on the screen; it is used to refer programmatically to the button.
If multiple objects on the same form have the same NAME attribute, an array of the given name is created automatically. Each element in the array represents an individual Form object. Elements are indexed in source order starting at 0. For example, if two Text elements and a Reset element on the same form have their NAME attribute set to "myField", an array with the elements myField[0], myField[1], and myField[2] is created. You need to be aware of this situation in your code and know whether myField refers to a single element or to an array of elements.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
See also
Reset.value
type
For all Reset objects, the value of the type property is "reset". This property specifies the form element's type.
	Property of
	Reset

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.
for (var i = 0; i < document.form1.elements.length; i++) {
 document.writeln("
type is " + document.form1.elements[i].type)
}
value
A string that reflects the reset button's VALUE attribute.
	Property of
	Reset

	Read-only
	

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
This string is displayed on the face of the button. When a VALUE attribute is not specified in HTML, the value property is the string "Reset".
Do not confuse the value property with the name property. The name property is not displayed on the screen; it is used to refer programmatically to the button.
Examples
The following function evaluates the value property of a group of buttons and displays it in the msgWindow window:
function valueGetter() {
 var msgWindow=window.open("")
 msgWindow.document.write("submitButton.value is " +
 document.valueTest.submitButton.value + "
")
 msgWindow.document.write("resetButton.value is " +
 document.valueTest.resetButton.value + "
")
 msgWindow.document.write("helpButton.value is " +
 document.valueTest.helpButton.value + "
")
 msgWindow.document.close()
}
This example displays the following values:
Query Submit
Reset
Help
The previous example assumes the buttons have been defined as follows:
<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="button" NAME="helpButton" VALUE="Help">
See also
Reset.name
Methods
blur
Removes focus from the reset button.
	Method of
	Reset

	Implemented in
	Navigator 2.0

Syntax
blur()
Parameters
None
Examples
The following example removes focus from the reset button userReset:
userReset.blur()
This example assumes that the button is defined as
<INPUT TYPE="reset" NAME="userReset">
See also
Reset.focus
click
Simulates a mouse-click on the reset button, but does not trigger an object's onClick event handler.
	Method of
	Reset

	Implemented in
	Navigator 2.0

Syntax
click()
Parameters
None
focus
Navigates to the reset button and gives it focus.
	Method of
	Reset

	Implemented in
	Navigator 2.0

Syntax
focus()
Parameters
None
See also
Reset.blur
handleEvent
Invokes the handler for the specified event.
	Method of
	Reset

	Implemented in
	Navigator 4.0

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the specified object has an event handler.

Select
A selection list on an HTML form. The user can choose one or more items from a selection list, depending on how the list was created.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added type property; added the ability to add and delete options.
Navigator 4.0: added handleEvent method.

Created by
The HTML SELECT tag. For a given form, the JavaScript runtime engine creates appropriate Select objects for each selection list and puts these objects in the elements array of the corresponding Form object. You access a Select object by indexing this array. You can index the array either by number or, if supplied, by using the value of the NAME attribute.
The runtime engine also creates Option objects for each OPTION tag inside the SELECT tag.
Event handlers
· onBlur
· onChange
· onFocus
Description
The following figure shows a form containing two selection lists. The user can choose one item from the list on the left and can choose multiple items from the list on the right:
[image: select]
A Select object is a form element and must be defined within a FORM tag.
Property Summary
	form
	Specifies the form containing the selection list.

	length
	Reflects the number of options in the selection list.

	name
	Reflects the NAME attribute.

	options
	Reflects the OPTION tags.

	selectedIndex
	Reflects the index of the selected option (or the first selected option, if multiple options are selected).

	type
	Specifies that the object is represents a selection list and whether it can have one or more selected options.

Method Summary
	blur
	Removes focus from the selection list.

	focus
	Gives focus to the selection list.

	handleEvent
	Invokes the handler for the specified event.

Examples
Example 1. The following example displays two selection lists. In the first list, the user can select only one item; in the second list, the user can select multiple items.
Choose the music type for your free CD:
<SELECT NAME="music_type_single">
 <OPTION SELECTED> R&B
 <OPTION> Jazz
 <OPTION> Blues
 <OPTION> New Age
</SELECT>
<P>Choose the music types for your free CDs:

<SELECT NAME="music_type_multi" MULTIPLE>
 <OPTION SELECTED> R&B
 <OPTION> Jazz
 <OPTION> Blues
 <OPTION> New Age
</SELECT>
Example 2. The following example displays two selection lists that let the user choose a month and day. These selection lists are initialized to the current date. The user can change the month and day by using the selection lists or by choosing preset dates from radio buttons. Text fields on the form display the values of the Select object's properties and indicate the date chosen and whether it is Cinco de Mayo.
<HTML>
<HEAD>
<TITLE>Select object example</TITLE>
</HEAD>
<BODY>
<SCRIPT>
var today = new Date()
//---------------
function updatePropertyDisplay(monthObj,dayObj) {
 // Get date strings
 var monthInteger, dayInteger, monthString, dayString
 monthInteger=monthObj.selectedIndex
 dayInteger=dayObj.selectedIndex
 monthString=monthObj.options[monthInteger].text
 dayString=dayObj.options[dayInteger].text
 // Display property values
 document.selectForm.textFullDate.value=monthString + " " + dayString
 document.selectForm.textMonthLength.value=monthObj.length
 document.selectForm.textDayLength.value=dayObj.length
 document.selectForm.textMonthName.value=monthObj.name
 document.selectForm.textDayName.value=dayObj.name
 document.selectForm.textMonthIndex.value=monthObj.selectedIndex
 document.selectForm.textDayIndex.value=dayObj.selectedIndex
 // Is it Cinco de Mayo?
 if (monthObj.options[4].selected && dayObj.options[4].selected)
 document.selectForm.textCinco.value="Yes!"
 else
 document.selectForm.textCinco.value="No"
}
</SCRIPT>
<!--------------->
<FORM NAME="selectForm">
<P>Choose a month and day:
Month: <SELECT NAME="monthSelection"
 onChange="updatePropertyDisplay(this,document.selectForm.daySelection)">
 <OPTION> January <OPTION> February <OPTION> March
 <OPTION> April <OPTION> May <OPTION> June
 <OPTION> July <OPTION> August <OPTION> September
 <OPTION> October <OPTION> November <OPTION> December
</SELECT>
Day: <SELECT NAME="daySelection"
 onChange="updatePropertyDisplay(document.selectForm.monthSelection,this)">
 <OPTION> 1 <OPTION> 2 <OPTION> 3 <OPTION> 4 <OPTION> 5
 <OPTION> 6 <OPTION> 7 <OPTION> 8 <OPTION> 9 <OPTION> 10
 <OPTION> 11 <OPTION> 12 <OPTION> 13 <OPTION> 14 <OPTION> 15
 <OPTION> 16 <OPTION> 17 <OPTION> 18 <OPTION> 19 <OPTION> 20
 <OPTION> 21 <OPTION> 22 <OPTION> 23 <OPTION> 24 <OPTION> 25
 <OPTION> 26 <OPTION> 27 <OPTION> 28 <OPTION> 29 <OPTION> 30
 <OPTION> 31
</SELECT>
<P>Set the date to:
<INPUT TYPE="radio" NAME="dateChoice"
 onClick="
 monthSelection.selectedIndex=0;
 daySelection.selectedIndex=0;
 updatePropertyDisplay
 document.selectForm.monthSelection,document.selectForm.daySelection)">
 New Year's Day
<INPUT TYPE="radio" NAME="dateChoice"
 onClick="
 monthSelection.selectedIndex=4;
 daySelection.selectedIndex=4;
 updatePropertyDisplay
 (document.selectForm.monthSelection,document.selectForm.daySelection)">
 Cinco de Mayo
<INPUT TYPE="radio" NAME="dateC
Example 3. Add an option with the Option constructor. The following example creates two Select objects, one with and one without the MULTIPLE attribute. No options are initially defined for either object. When the user clicks a button associated with the Select object, the populate function creates four options for the Select object and selects the first option.

<SCRIPT>
function populate(inForm) {
 colorArray = new Array("Red", "Blue", "Yellow", "Green")

 var option0 = new Option("Red", "color_red")
 var option1 = new Option("Blue", "color_blue")
 var option2 = new Option("Yellow", "color_yellow")
 var option3 = new Option("Green", "color_green")

 for (var i=0; i < 4; i++) {
 eval("inForm.selectTest.options[i]=option" + i)
 if (i==0) {
 inForm.selectTest.options[i].selected=true
 }
 }

 history.go(0)
}
</SCRIPT>

<H3>Select Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest"></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
<P>
</FORM>

<HR>
<H3>Select-Multiple Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest" multiple></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
</FORM>

Example 4. Delete an option. The following function removes an option from a Select object.

function deleteAnItem(theList,itemNo) {
 theList.options[itemNo]=null
 history.go(0)
}
Properties
form
An object reference specifying the form containing the selection list.

	Property of
	Select

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
length
The number of options in the selection list.

	Property of
	Select

	Read-only
	

	Implemented in
	Navigator 2.0

name

A string specifying the name of the selection list.

	Property of
	Select

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The name property initially reflects the value of the NAME attribute. Changing the name property overrides this setting. The name property is not displayed on the screen; it is used to refer to the list programmatically.
If multiple objects on the same form have the same NAME attribute, an array of the given name is created automatically. Each element in the array represents an individual Form object. Elements are indexed in source order starting at 0. For example, if two Text elements and a Select element on the same form have their NAME attribute set to "myField", an array with the elements myField[0], myField[1], and myField[2] is created. You need to be aware of this situation in your code and know whether myField refers to a single element or to an array of elements.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
") }
}
options
An array corresponding to options in a Select object in source order.

	Property of
	Select

	Read-only
	

	Implemented in
	Navigator 2.0

Description
You can refer to the options of a Select object by using the options array. This array contains an entry for each option in a Select object (OPTION tag) in source order. For example, if a Select object named musicStyle contains three options, you can access these options as musicStyle.options[0], musicStyle.options[1], and musicStyle.options[2].

To obtain the number of options in the selection list, you can use either Select.length or the length property of the options array. For example, you can get the number of options in the musicStyle selection list with either of these expressions:

musicStyle.length
musicStyle.options.length

You can add or remove options from a selection list using this array. To add or replace an option to an existing Select object, you assign a new Option object to a place in the array. For example, to create a new Option object called jeans and add it to the end of the selection list named myList, you could use this code:

jeans = new Option("Blue Jeans", "jeans", false, false);
myList.options[myList.length] = jeans;

To delete an option from a Select object, you set the appropriate index of the options array to null. Removing an option compresses the options array. For example, assume that myList has 5 elements in it, the value of the fourth element is "foo", and you execute this statement:

myList.options[1] = null

Now, myList has 4 elements in it and the value of the third element is "foo".

After you delete an option, you must refresh the document by using history.go(0). This statement must be last. When the document reloads, variables are lost if not saved in cookies or form element values.

You can determine which option in a selection list is currently selected by using either the selectedIndex property of the options array or of the Select object itself. That is, the following expressions return the same value:

musicStyle.selectedIndex
musicStyle.options.selectedIndex

For more information about this property, see Select.selectedIndex.

For Select objects that can have multiple selections (that is, the SELECT tag has the MULTIPLE attribute), the selectedIndex property is not very useful. In this case, it returns the index of the first selection. To find all the selected options, you have to loop and test each option individually. For example, to print a list of all selected options in a selection list named mySelect, you could use code such as this:

document.write("You've selected the following options:\n")
for (var i = 0; i < mySelect.options.length; i++) {
 if (mySelect.options[i].selected)
 document.write(" mySelect.options[i].text\n")
}

In general, to work with individual options in a selection list, you work with the appropriate Option object.
selectedIndex
An integer specifying the index of the selected option in a Select object.

	Property of
	Select

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
Options in a Select object are indexed in the order in which they are defined, starting with an index of 0. You can set the selectedIndex property at any time. The display of the Select object updates immediately when you set the selectedIndex property.

If no option is selected, selectedIndex has a value of -1.

In general, the selectedIndex property is more useful for Select objects that are created without the MULTIPLE attribute. If you evaluate selectedIndex when multiple options are selected, the selectedIndex property specifies the index of the first option only. Setting selectedIndex clears any other options that are selected in the Select object.

The Option.selected property is more useful in conjunction with Select objects that are created with the MULTIPLE attribute. With the Option.selected property, you can evaluate every option in the options array to determine multiple selections, and you can select individual options without clearing the selection of other options.
Examples
In the following example, the getSelectedIndex function returns the selected index in the musicType Select object:

function getSelectedIndex() {
 return document.musicForm.musicType.selectedIndex
}

The previous example assumes that the Select object is similar to the following:

<SELECT NAME="musicType">
 <OPTION SELECTED> R&B
 <OPTION> Jazz
 <OPTION> Blues
 <OPTION> New Age
</SELECT>

type

For all Select objects created with the MULTIPLE keyword, the value of the type property is "select-multiple". For Select objects created without this keyword, the value of the type property is "select-one". This property specifies the form element's type.

	Property of
	Select

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
 document.writeln("
type is " + document.form1.elements[i].type)
}
Methods
blur
Removes focus from the selection list.

	Method of
	Select

	Implemented in
	Navigator 2.0

Syntax
blur()

Parameters
None

focus

Navigates to the selection list and gives it focus.

	Method of
	Select

	Implemented in
	Navigator 2.0

Syntax

focus()

Parameters
None
Description
Use the focus method to navigate to a selection list and give it focus. The user can then make selections from the list.

handleEvent
Invokes the handler for the specified event.

	Method of
	Select

	Implemented in
	Navigator 4.0

Syntax
handleEvent(event)
Parameters

	event
	The name of an event for which the object has an event handler.

Submit
A submit button on an HTML form. A submit button causes a form to be submitted.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added type property; added onBlur and onFocus event handlers; added blur and focus methods
Navigator 4.0: added handleEvent method.

Created by
The HTML INPUT tag, with "submit" as the value of the TYPE attribute. For a given form, the JavaScript runtime engine creates an appropriate Submit object and puts it in the elements array of the corresponding Form object. You access a Submit object by indexing this array. You can index the array either by number or, if supplied, by using the value of the NAME attribute.
Event handlers
· onBlur
· onClick
· onFocus
Security
Navigator 4.0: Submitting a form to a mailto: or news: URL requires the UniversalSendMail privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Description
A Submit object on a form looks as follows:
[image: submit]
A Submit object is a form element and must be defined within a FORM tag.
Clicking a submit button submits a form to the URL specified by the form's action property. This action always loads a new page into the client; it may be the same as the current page, if the action so specifies or is not specified.
The submit button's onClick event handler cannot prevent a form from being submitted; instead, use the form's onSubmit event handler or use the submit method instead of a Submit object. See the examples for the Form object.
Property Summary
	form
	Specifies the form containing the Submit object.

	name
	Reflects the NAME attribute.

	type
	Reflects the TYPE attribute.

	value
	Reflects the VALUE attribute.

Method Summary
	blur
	Removes focus from the submit button.

	click
	Simulates a mouse-click on the submit button.

	focus
	Gives focus to the submit button.

	handleEvent
	Invokes the handler for the specified event.

Examples
The following example creates a Submit object called submitButton. The text "Done" is displayed on the face of the button.
<INPUT TYPE="submit" NAME="submitButton" VALUE="Done">
See also the examples for the Form.
See also
Button, Form, Reset, Form.submit, onSubmit
Properties
form
An object reference specifying the form containing the submit button.
	Property of
	Submit

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
Examples
The following example shows a form with several elements. When the user clicks button2, the function showElements displays an alert dialog box containing the names of each element on the form myForm.
<SCRIPT>
function showElements(theForm) {
 str = "Form Elements of form " + theForm.name + ": \n "
 for (i = 0; i < theForm.length; i++)
 str += theForm.elements[i].name + "\n"
 alert(str)
}
</SCRIPT>
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"
 onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="submit" VALUE="Show Form Elements"
 onClick="showElements(this.form)">
</FORM>
The alert dialog box displays the following text:
Form Elements of form myForm:
text1
button1
button2
See also
Form
name
A string specifying the submit button's name.
	Property of
	Submit

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The name property initially reflects the value of the NAME attribute. Changing the name property overrides this setting.
Do not confuse the name property with the label displayed on the Submit button. The value property specifies the label for this button. The name property is not displayed on the screen; it is used to refer programmatically to the button.
If multiple objects on the same form have the same NAME attribute, an array of the given name is created automatically. Each element in the array represents an individual Form object. Elements are indexed in source order starting at 0. For example, if two Text elements and a Submit element on the same form have their NAME attribute set to "myField", an array with the elements myField[0], myField[1], and myField[2] is created. You need to be aware of this situation in your code and know whether myField refers to a single element or to an array of elements.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
See also
Submit.value
type
For all Submit objects, the value of the type property is "submit". This property specifies the form element's type.
	Property of
	Submit

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.
for (var i = 0; i < document.form1.elements.length; i++) {
 document.writeln("
type is " + document.form1.elements[i].type)
}
value
A string that reflects the submit button's VALUE attribute.
	Property of
	Submit

	Read-only
	

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
When a VALUE attribute is specified in HTML, the value property is that string and is displayed on the face of the button. When a VALUE attribute is not specified in HTML, the value property for the button is the string "Submit Query."
Do not confuse the value property with the name property. The name property is not displayed on the screen; it is used to refer programmatically to the button.
Examples
The following function evaluates the value property of a group of buttons and displays it in the msgWindow window:
function valueGetter() {
 var msgWindow=window.open("")
 msgWindow.document.write("submitButton.value is " +
 document.valueTest.submitButton.value + "
")
 msgWindow.document.write("resetButton.value is " +
 document.valueTest.resetButton.value + "
")
 msgWindow.document.write("helpButton.value is " +
 document.valueTest.helpButton.value + "
")
 msgWindow.document.close()
}
This example displays the following values:
Query Submit
Reset
Help
The previous example assumes the buttons have been defined as follows:
<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="button" NAME="helpButton" VALUE="Help">
See also
Submit.name
Methods
blur
Removes focus from the submit button.
	Method of
	Submit

	Implemented in
	Navigator 2.0

Syntax
blur()
Parameters
None
See also
Submit.focus
click
Simulates a mouse-click on the submit button, but does not trigger an object's onClick event handler.
	Method of
	Submit

	Implemented in
	Navigator 2.0

Syntax
click()
Parameters
None
focus
Navigates to the submit button and gives it focus.
	Method of
	Submit

	Implemented in
	Navigator 2.0

Syntax
focus()
Parameters
None
See also
Submit.blur
handleEvent
Invokes the handler for the specified event.
	Method of
	Submit

	Implemented in
	Navigator 4.0

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the specified object has an event handler.

Text
A text input field on an HTML form. The user can enter a word, phrase, or series of numbers in a text field.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added type property.
Navigator 4.0: added handleEvent method.

Created by
The HTML INPUT tag, with "text" as the value of the TYPE attribute. For a given form, the JavaScript runtime engine creates appropriate Text objects and puts these objects in the elements array of the corresponding Form object. You access a Text object by indexing this array. You can index the array either by number or, if supplied, by using the value of the NAME attribute.
To define a Text object, use standard HTML syntax with the addition of JavaScript event handlers.
Event handlers
· onBlur
· onChange
· onFocus
· onSelect
Description
A Text object on a form looks as follows:
[image: text]
A Text object is a form element and must be defined within a FORM tag.
Text objects can be updated (redrawn) dynamically by setting the value property (this.value).
Property Summary
	defaultValue
	Reflects the VALUE attribute.

	form
	Specifies the form containing the Text object.

	name
	Reflects the NAME attribute.

	type
	Reflects the TYPE attribute.

	value
	Reflects the current value of the Text object's field.

Method Summary
	blur
	Removes focus from the object.

	focus
	Gives focus to the object.

	handleEvent
	Invokes the handler for the specified event.

	select
	Selects the input area of the object.

Examples
Example 1. The following example creates a Text object that is 25 characters long. The text field appears immediately to the right of the words "Last name:". The text field is blank when the form loads.
Last name: <INPUT TYPE="text" NAME="last_name" VALUE="" SIZE=25>
Example 2. The following example creates two Text objects on a form. Each object has a default value. The city object has an onFocus event handler that selects all the text in the field when the user tabs to that field. The state object has an onChange event handler that forces the value to uppercase.
<FORM NAME="form1">

City: <INPUT TYPE="text" NAME="city" VALUE="Anchorage"
 SIZE="20" onFocus="this.select()">
State: <INPUT TYPE="text" NAME="state" VALUE="AK" SIZE="2"
 onChange="this.value=this.value.toUpperCase()">
</FORM>
See also the examples for the onBlur, onChange, onFocus, and onSelect.
See also
Text, Form, Password, String, Textarea
Properties
defaultValue
A string indicating the default value of a Text object.
	Property of
	Text

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The initial value of defaultValue reflects the value of the VALUE attribute. Setting defaultValue programmatically overrides the initial setting.
You can set the defaultValue property at any time. The display of the related object does not update when you set the defaultValue property, only when you set the value property.
Examples
The following function evaluates the defaultValue property of objects on the surfCity form and displays the values in the msgWindow window:
function defaultGetter() {
 msgWindow=window.open("")
 msgWindow.document.write("hidden.defaultValue is " +
 document.surfCity.hiddenObj.defaultValue + "
")
 msgWindow.document.write("password.defaultValue is " +
 document.surfCity.passwordObj.defaultValue + "
")
 msgWindow.document.write("text.defaultValue is " +
 document.surfCity.textObj.defaultValue + "
")
 msgWindow.document.write("textarea.defaultValue is " +
 document.surfCity.textareaObj.defaultValue + "
")
 msgWindow.document.close()
}
See also
Text.value
form
An object reference specifying the form containing this object.
	Property of
	Text

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
Examples
Example 1. In the following example, the form myForm contains a Text object and a button. When the user clicks the button, the value of the Text object is set to the form's name. The button's onClick event handler uses this.form to refer to the parent form, myForm.
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"
 onClick="this.form.text1.value=this.form.name">
</FORM>
Example 2. The following example shows a form with several elements. When the user clicks button2, the function showElements displays an alert dialog box containing the names of each element on the form myForm.
function showElements(theForm) {
 str = "Form Elements of form " + theForm.name + ": \n "
 for (i = 0; i < theForm.length; i++)
 str += theForm.elements[i].name + "\n"
 alert(str)
}
</script>
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"
 onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="button" VALUE="Show Form Elements"
 onClick="showElements(this.form)">
</FORM>
The alert dialog box displays the following text:
JavaScript Alert:
Form Elements of form myForm:
text1
button1
button2
Example 3. The following example uses an object reference, rather than the this keyword, to refer to a form. The code returns a reference to myForm, which is a form containing myTextObject.
document.myForm.myTextObject.form
See also
Form
name
A string specifying the name of this object.
	Property of
	Text

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The name property initially reflects the value of the NAME attribute. Changing the name property overrides this setting. The name property is not displayed on-screen; it is used to refer to the objects programmatically.
If multiple objects on the same form have the same NAME attribute, an array of the given name is created automatically. Each element in the array represents an individual Form object. Elements are indexed in source order starting at 0. For example, if two Text elements and a Textarea element on the same form have their NAME attribute set to "myField", an array with the elements myField[0], myField[1], and myField[2] is created. You need to be aware of this situation in your code and know whether myField refers to a single element or to an array of elements.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
type
For all Text objects, the value of the type property is "text". This property specifies the form element's type.
	Property of
	Text

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.
for (var i = 0; i < document.form1.elements.length; i++) {
 document.writeln("
type is " + document.form1.elements[i].type)
}
value
A string that reflects the VALUE attribute of the object.
	Property of
	Text

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The value property is a string that initially reflects the VALUE attribute. This string is displayed in the text field. The value of this property changes when a user or a program modifies the field.
You can set the value property at any time. The display of the Text object updates immediately when you set the value property.
Examples
The following function evaluates the value property of a group of buttons and displays it in the msgWindow window:
function valueGetter() {
 var msgWindow=window.open("")
 msgWindow.document.write("submitButton.value is " +
 document.valueTest.submitButton.value + "
")
 msgWindow.document.write("resetButton.value is " +
 document.valueTest.resetButton.value + "
")
 msgWindow.document.write("myText.value is " +
 document.valueTest.myText.value + "
")
 msgWindow.document.close()
}
This example displays the following:
submitButton.value is Query Submit
resetButton.value is Reset
myText.value is Stonefish are dangerous.
The previous example assumes the buttons have been defined as follows:
<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="text" NAME="myText" VALUE="Stonefish are dangerous.">
See also
Text.defaultValue
Methods
blur
Removes focus from the text field.
	Method of
	Text

	Implemented in
	Navigator 2.0

Syntax
blur()
Parameters
None
Examples
The following example removes focus from the text element userText:
userText.blur()
This example assumes that the text element is defined as
<INPUT TYPE="text" NAME="userText">
See also
Text.focus, Text.select
focus
Navigates to the text field and gives it focus.
	Method of
	Text

	Implemented in
	Navigator 2.0

Syntax
focus()
Parameters
None
Description
Use the focus method to navigate to a text field and give it focus. You can then either programmatically enter a value in the field or let the user enter a value. If you use this method without the select method, the cursor is positioned at the beginning of the field.
Example
See example for select.
See also
Text.blur, Text.select
handleEvent
Invokes the handler for the specified event.
	Method of
	Text

	Implemented in
	Navigator 4.0

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the specified object has an event handler.

select
Selects the input area of the text field.
	Method of
	Text

	Implemented in
	Navigator 2.0

Syntax
select()
Parameters
None
Description
Use the select method to highlight the input area of a text field. You can use the select method with the focus method to highlight a field and position the cursor for a user response. This makes it easy for the user to replace all the text in the field.
Example
The following example uses an onClick event handler to move the focus to a text field and select that field for changing:
<FORM NAME="myForm">
Last name: <INPUT TYPE="text" NAME="lastName" SIZE=20 VALUE="Pigman">

First name: <INPUT TYPE="text" NAME="firstName" SIZE=20 VALUE="Victoria">

<INPUT TYPE="button" VALUE="Change last name"
 onClick="this.form.lastName.select();this.form.lastName.focus();">
</FORM>

Textarea
A multiline input field on an HTML form. The user can use a textarea field to enter words, phrases, or numbers.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added type property.
Navigator 4.0: added handleEvent method.

Created by
The HTML TEXTAREA tag. For a given form, the JavaScript runtime engine creates appropriate Textarea objects and puts these objects in the elements array of the corresponding Form object. You access a Textarea object by indexing this array. You can index the array either by number or, if supplied, by using the value of the NAME attribute.
To define a text area, use standard HTML syntax with the addition of JavaScript event handlers.
Event handlers
· onBlur
· onChange
· onFocus
· onKeyDown
· onKeyPress
· onKeyUp
· onSelect
Description
A Textarea object on a form looks as follows:
[image: textarea]
A Textarea object is a form element and must be defined within a FORM tag.
Textarea objects can be updated (redrawn) dynamically by setting the value property (this.value).
To begin a new line in a Textarea object, you can use a newline character. Although this character varies from platform to platform (Unix is \n, Windows is \r, and Macintosh is \n), JavaScript checks for all newline characters before setting a string-valued property and translates them as needed for the user's platform. You could also enter a newline character programmatically--one way is to test the navigator.appVersion property to determine the current platform, then set the newline character accordingly. See navigator.appVersion for an example.
Property Summary
	defaultValue
	Reflects the VALUE attribute.

	form
	Specifies the form containing the Textarea object.

	name
	Reflects the NAME attribute.

	type
	Specifies that the object is a Textarea object.

	value
	Reflects the current value of the Textarea object.

Method Summary
	blur
	Removes focus from the object.

	focus
	Gives focus to the object.

	handleEvent
	Invokes the handler for the specified event.

	select
	Selects the input area of the object.

Examples
Example 1. The following example creates a Textarea object that is six rows long and 55 columns wide. The textarea field appears immediately below the word "Description:". When the form loads, the Textarea object contains several lines of data, including one blank line.
Description:

<TEXTAREA NAME="item_description" ROWS=6 COLS=55>
Our storage ottoman provides an attractive way to
store lots of CDs and videos--and it's versatile
enough to store other things as well.
It can hold up to 72 CDs under the lid and 20 videos
in the drawer below.
</TEXTAREA>
Example 2. The following example creates a string variable containing newline characters for different platforms. When the user clicks the button, the Textarea object is populated with the value from the string variable. The result is three lines of text in the Textarea object.
<SCRIPT>
myString="This is line one.\nThis is line two.\rThis is line three."
</SCRIPT>
<FORM NAME="form1">
<INPUT TYPE="button" Value="Populate the textarea"
onClick="document.form1.textarea1.value=myString">
 <P>
<TEXTAREA NAME="textarea1" ROWS=6 COLS=55></TEXTAREA>
See also
Form, Password, String, Text
Properties
defaultValue
A string indicating the default value of a Textarea object.
	Property of
	Textarea

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The initial value of defaultValue reflects the value specified between the TEXTAREA start and end tags. Setting defaultValue programmatically overrides the initial setting.
You can set the defaultValue property at any time. The display of the related object does not update when you set the defaultValue property, only when you set the value property.
Examples
The following function evaluates the defaultValue property of objects on the surfCity form and displays the values in the msgWindow window:
function defaultGetter() {
 msgWindow=window.open("")
 msgWindow.document.write("hidden.defaultValue is " +
 document.surfCity.hiddenObj.defaultValue + "
")
 msgWindow.document.write("password.defaultValue is " +
 document.surfCity.passwordObj.defaultValue + "
")
 msgWindow.document.write("text.defaultValue is " +
 document.surfCity.textObj.defaultValue + "
")
 msgWindow.document.write("textarea.defaultValue is " +
 document.surfCity.textareaObj.defaultValue + "
")
 msgWindow.document.close()
}
See also
Textarea.value
form
An object reference specifying the form containing this object.
	Property of
	Textarea

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Each form element has a form property that is a reference to the element's parent form. This property is especially useful in event handlers, where you might need to refer to another element on the current form.
Examples
Example 1. The following example shows a form with several elements. When the user clicks button2, the function showElements displays an alert dialog box containing the names of each element on the form myForm.
function showElements(theForm) {
 str = "Form Elements of form " + theForm.name + ": \n "
 for (i = 0; i < theForm.length; i++)
 str += theForm.elements[i].name + "\n"
 alert(str)
}
</script>
<FORM NAME="myForm">
Form name:<INPUT TYPE="textarea" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"
 onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="button" VALUE="Show Form Elements"
 onClick="showElements(this.form)">
</FORM>
The alert dialog box displays the following text:
JavaScript Alert:
Form Elements of form myForm:
text1
button1
button2
Example 2. The following example uses an object reference, rather than the this keyword, to refer to a form. The code returns a reference to myForm, which is a form containing myTextareaObject.
document.myForm.myTextareaObject.form
See also
Form
name
A string specifying the name of this object.
	Property of
	Textarea

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The name property initially reflects the value of the NAME attribute. Changing the name property overrides this setting. The name property is not displayed on-screen; it is used to refer to the objects programmatically.
If multiple objects on the same form have the same NAME attribute, an array of the given name is created automatically. Each element in the array represents an individual Form object. Elements are indexed in source order starting at 0. For example, if two Text elements and a Textarea element on the same form have their NAME attribute set to "myField", an array with the elements myField[0], myField[1], and myField[2] is created. You need to be aware of this situation in your code and know whether myField refers to a single element or to an array of elements.
Examples
In the following example, the valueGetter function uses a for loop to iterate over the array of elements on the valueTest form. The msgWindow window displays the names of all the elements on the form:
newWindow=window.open("http://home.netscape.com")
function valueGetter() {
 var msgWindow=window.open("")
 for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {
 msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
 }
}
type
For all Textarea objects, the value of the type property is "textarea". This property specifies the form element's type.
	Property of
	Textarea

	Read-only
	

	Implemented in
	Navigator 3.0

Examples
The following example writes the value of the type property for every element on a form.
for (var i = 0; i < document.form1.elements.length; i++) {
 document.writeln("
type is " + document.form1.elements[i].type)
}
value
A string that initially reflects the VALUE attribute.
	Property of
	Textarea

	Implemented in
	Navigator 2.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
This string is displayed in the textarea field. The value of this property changes when a user or a program modifies the field.
You can set the value property at any time. The display of the Textarea object updates immediately when you set the value property.
Examples
The following function evaluates the value property of a group of buttons and displays it in the msgWindow window:
function valueGetter() {
 var msgWindow=window.open("")
 msgWindow.document.write("submitButton.value is " +
 document.valueTest.submitButton.value + "
")
 msgWindow.document.write("resetButton.value is " +
 document.valueTest.resetButton.value + "
")
 msgWindow.document.write("blurb.value is " +
 document.valueTest.blurb.value + "
")
 msgWindow.document.close()
}
This example displays the following:
submitButton.value is Query Submit
resetButton.value is Reset
blurb.value is Tropical waters contain all sorts of cool fish,
such as the harlequin ghost pipefish, dragonet, and cuttlefish.
A cuttlefish looks much like a football wearing a tutu and a mop.
The previous example assumes the buttons have been defined as follows:
<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<TEXTAREA NAME="blurb" rows=3 cols=60>
Tropical waters contain all sorts of cool fish,
such as the harlequin ghost pipefish, dragonet, and cuttlefish.
A cuttlefish looks much like a football wearing a tutu and a mop.
</TEXTAREA>
See also
Textarea.defaultValue
Methods
blur
Removes focus from the object.
	Method of
	Textarea

	Implemented in
	Navigator 2.0

Syntax
blur()
Parameters
None
Examples
The following example removes focus from the textarea element userText:
userText.blur()
This example assumes that the textarea is defined as
<TEXTAREA NAME="userText">
Initial text for the text area.
</TEXTAREA>
See also
Textarea.focus, Textarea.select
focus
Navigates to the textarea field and gives it focus.
	Method of
	Textarea

	Implemented in
	Navigator 2.0

Syntax
focus()
Parameters
None
Description
Use the focus method to navigate to the textarea field and give it focus. You can then either programmatically enter a value in the field or let the user enter a value. If you use this method without the select method, the cursor is positioned at the beginning of the field.
See also
Textarea.blur, Textarea.select
Example
See example for Textarea.select.
handleEvent
Invokes the handler for the specified event.
	Method of
	Textarea

	Implemented in
	Navigator 4.0

Syntax
handleEvent(event)
Parameters
	event
	The name of an event for which the object has an event handler.

Description
For information on handling events, see "General Information about Events".
select
Selects the input area of the object.
	Method of
	Textarea

	Implemented in
	Navigator 2.0

Syntax
select()
Parameters
None
Description
Use the select method to highlight the input area of a textarea field. You can use the select method with the focus method to highlight the field and position the cursor for a user response. This makes it easy for the user to replace all the text in the field.
Example
The following example uses an onClick event handler to move the focus to a textarea field and select that field for changing:
<FORM NAME="myForm">
Last name: <INPUT TYPE="text" NAME="lastName" SIZE=20 VALUE="Pigman">

First name: <INPUT TYPE="text" NAME="firstName" SIZE=20 VALUE="Victoria">

Description:

<TEXTAREA NAME="desc" ROWS=3 COLS=40>An avid scuba diver.</TEXTAREA>

<INPUT TYPE="button" VALUE="Change description"
 onClick="this.form.desc.select();this.form.desc.focus();">
</FORM>

Chapter 8
Browser
This chapter deals with the browser and elements associated with it.
Table 8.1 summarizes the objects in this chapter.
Table 8.1 Browser-related objects
	Object
	Description

	navigator
	Contains information about the version of Navigator in use.

	MimeType
	Represents a MIME type (Multipart Internet Mail Extension) supported by the client.

	Plugin
	Represents a plug-in module installed on the client.

navigator
Contains information about the version of Navigator in use.
	Client-side object
	

	Implemented in
	Navigator 2.0
Navigator 3.0: added mimeTypes and plugins properties; added javaEnabled and taintEnabled methods.
Navigator 4.0: added language and platform properties; added preference method.

Created by
The JavaScript runtime engine on the client automatically creates the navigator object.
Description
Use the navigator object to determine which version of the Navigator your users have, what MIME types the user's Navigator can handle, and what plug-ins the user has installed. All of the properties of the navigator object are read-only.
Property Summary
	appCodeName
	Specifies the code name of the browser.

	appName
	Specifies the name of the browser.

	appVersion
	Specifies version information for the Navigator.

	language
	Indicates the translation of the Navigator being used.

	mimeTypes
	An array of all MIME types supported by the client.

	platform
	Indicates the machine type for which the Navigator was compiled.

	plugins
	An array of all plug-ins currently installed on the client.

	userAgent
	Specifies the user-agent header.

Method Summary
	javaEnabled
	Tests whether Java is enabled.

	plugins.refresh
	Makes newly installed plug-ins available and optionally reloads open documents that contain plug-ins.

	preference
	Allows a signed script to get and set certain Navigator preferences.

	taintEnabled
	Specifies whether data tainting is enabled.

Properties
appCodeName
A string specifying the code name of the browser.
	Property of
	navigator

	Read-only
	

	Implemented in
	Navigator 2.0

Examples
The following example displays the value of the appCodeName property:
document.write("The value of navigator.appCodeName is " +
 navigator.appCodeName)
For Navigator 2.0 and 3.0, this displays the following:
The value of navigator.appCodeName is Mozilla
appName
A string specifying the name of the browser.
	Property of
	navigator

	Read-only
	

	Implemented in
	Navigator 2.0

Examples
The following example displays the value of the appName property:
document.write("The value of navigator.appName is " +
 navigator.appName)
For Navigator 2.0 and 3.0, this displays the following:
The value of navigator.appName is Netscape
appVersion
A string specifying version information for the Navigator.
	Property of
	navigator

	Read-only
	

	Implemented in
	Navigator 2.0

Description
The appVersion property specifies version information in the following format:
releaseNumber (platform; country)
The values contained in this format are the following:
· releaseNumber is the version number of the Navigator. For example, "2.0b4" specifies Navigator 2.0, beta 4.
· platform is the platform upon which the Navigator is running. For example, "Win16" specifies a 16-bit version of Windows such as Windows 3.1.
· country is either "I" for the international release, or "U" for the domestic U.S. release. The domestic release has a stronger encryption feature than the international release.
Examples
Example 1. The following example displays version information for the Navigator:
document.write("The value of navigator.appVersion is " +
 navigator.appVersion)
For Navigator 2.0 on Windows 95, this displays the following:
The value of navigator.appVersion is 2.0 (Win95, I)
For Navigator 3.0 on Windows NT, this displays the following:
The value of navigator.appVersion is 3.0 (WinNT, I)
Example 2. The following example populates a Textarea object with newline characters separating each line. Because the newline character varies from platform to platform, the example tests the appVersion property to determine whether the user is running Windows (appVersion contains "Win" for all versions of Windows). If the user is running Windows, the newline character is set to \r\n; otherwise, it's set to \n, which is the newline character for Unix and Macintosh.
<SCRIPT>
var newline=null
function populate(textareaObject){
 if (navigator.appVersion.lastIndexOf('Win') != -1)
 newline="\r\n"
 else newline="\n"
 textareaObject.value="line 1" + newline + "line 2" + newline
 + "line 3"
}
</SCRIPT>
<FORM NAME="form1">

<TEXTAREA NAME="testLines" ROWS=8 COLS=55></TEXTAREA>
<P><INPUT TYPE="button" VALUE="Populate the Textarea object"
 onClick="populate(document.form1.testLines)">
</TEXTAREA>
</FORM>
language
Indicates the translation of the Navigator being used.
	Property of
	navigator

	Read-only
	

	Implemented in
	Navigator 4.0

Description
The value for language is usually a 2-letter code, such as "en" and occasionally a five-character code to indicate a language subtype, such as "zh_CN".
Use this property to determine the language of the Navigator client software being used. For example you might want to display translated text for the user.
mimeTypes
An array of all MIME types supported by the client.
	Property of
	navigator

	Read-only
	

	Implemented in
	Navigator 3.0

The mimeTypes array contains an entry for each MIME type supported by the client (either internally, via helper applications, or by plug-ins). For example, if a client supports three MIME types, these MIME types are reflected as navigator.mimeTypes[0], navigator.mimeTypes[1], and navigator.mimeTypes[2].
Each element of the mimeTypes array is a MimeType object.
See also
MimeType
platform
Indicates the machine type for which the Navigator was compiled.
	Property of
	navigator

	Read-only
	

	Implemented in
	Navigator 4.0

Description
Platform values are Win32, Win16, Mac68k, MacPPC and various Unix.
The machine type the Navigator was compiled for may differ from the actual machine type due to version differences, emulators, or other reasons.
If you use SmartUpdate to download software to a user's machine, you can use this property to ensure that the trigger downloads the appropriate JAR files. The triggering page checks the Navigator version before checking the platform property. For information on using SmartUpdate, see Using JAR Installation Manager for SmartUpdate.
plugins
An array of all plug-ins currently installed on the client.
	Property of
	navigator

	Read-only
	

	Implemented in
	Navigator 3.0

You can refer to the Plugin objects installed on the client by using this array. Each element of the plugins array is a Plugin object. For example, if three plug-ins are installed on the client, these plug-ins are reflected as navigator.plugins[0], navigator.plugins[1], and navigator.plugins[2].
To use the plugins array:
1. navigator.plugins[index]
2. navigator.plugins[index][mimeTypeIndex]
index is an integer representing a plug-in installed on the client or a string containing the name of a Plugin object (from the name property). The first form returns the Plugin object stored at the specified location in the plugins array. The second form returns the MimeType object at the specified index in that Plugin object.
To obtain the number of plug-ins installed on the client, use the length property: navigator.plugins.length.
plugins.refresh: The plugins array has its own method, refresh. This method makes newly installed plug-ins available, updates related arrays such as the plugins array, and optionally reloads open documents that contain plug-ins. You call this method with one of the following statements:
navigator.plugins.refresh(true)
navigator.plugins.refresh(false)
If you supply true, refresh refreshes the plugins array to make newly installed plug-ins available and reloads all open documents that contain embedded objects (EMBED tag). If you supply false, it refreshes the plugins array, but does not reload open documents.
When the user installs a plug-in, that plug-in is not available until refresh is called or the user closes and restarts Navigator.
Examples
The following code refreshes arrays and reloads open documents containing embedded objects:
navigator.plugins.refresh(true)
See also the examples for the Plugin object.
userAgent
A string representing the value of the user-agent header sent in the HTTP protocol from client to server.
	Property of
	navigator

	Read-only
	

	Implemented in
	Navigator 2.0

Description
Servers use the value sent in the user-agent header to identify the client.
Examples
The following example displays userAgent information for the Navigator:
document.write("The value of navigator.userAgent is " +
 navigator.userAgent)
For Navigator 2.0, this displays the following:
The value of navigator.userAgent is Mozilla/2.0 (Win16; I)
Methods
javaEnabled
Tests whether Java is enabled.
	Method of
	navigator

	Static
	

	Implemented in
	Navigator 3.0

Syntax
javaEnabled()
Parameters
None.
Description
javaEnabled returns true if Java is enabled; otherwise, false. The user can enable or disable Java by through user preferences.
Examples
The following code executes function1 if Java is enabled; otherwise, it executes function2.
if (navigator.javaEnabled()) {
 function1()
}
else function2()
See also
navigator.appCodeName, navigator.appName, navigator.userAgent
preference
Allows a signed script to get and set certain Navigator preferences.
	Method of
	navigator

	Static
	

	Implemented in
	Navigator 4.0

Syntax
preference(prefName)
preference(prefName, setValue)
Parameters
	prefName
	A string representing the name of the preference you want to get or set. Allowed preferences are listed below.

	setValue
	The value you want to assign to the preference. This can be a string, number, or Boolean.

Description
This method returns the value of the preference. If you use the method to set the value, it returns the new value.
Security
Reading a preference with the preference method requires the UniversalPreferencesRead privilege. Setting a preference with this method requires the UniversalPreferencesWrite privilege.
For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
With permission, you can get and set the preferences shown in Table 8.2.
Table 8.2 Preferences.
	To do this...
	Set this preference...
	To...

	Automatically load images
	general.always_load_images
	true or false

	Enable Java
	security.enable_java
	true or false

	Enable JavaScript
	javascript.enabled
	true or false

	Enable style sheets
	browser.enable_style_sheets
	true or false

	Enable SmartUpdate
	autoupdate.enabled
	true or false

	Accept all cookies
	network.cookie.cookieBehavior
	0

	Accept only cookies that get sent back to the originating server
	network.cookie.cookieBehavior
	1

	Disable cookies
	network.cookie.cookieBehavior
	2

	Warn before accepting cookie
	network.cookie.warnAboutCookies
	true or false

taintEnabled
Specifies whether data tainting is enabled.
	Method of
	navigator

	Static
	

	Implemented in
	Navigator 3.0; removed in Navigator 4.0

Syntax
navigator.taintEnabled()
Description
Tainting prevents other scripts from passing information that should be secure and private, such as directory structures or user session history. JavaScript cannot pass tainted values on to any server without the end user's permission.
Use taintEnabled to determine if data tainting is enabled. taintEnabled returns true if data tainting is enabled, false otherwise. The user enables or disables data tainting by using the environment variable NS_ENABLE_TAINT.
Examples
The following code executes function1 if data tainting is enabled; otherwise it executes function2.
if (navigator.taintEnabled()) {
 function1()
 }
else function2()
MimeType
A MIME type (Multipart Internet Mail Extension) supported by the client.
	Client-side object
	

	Implemented in
	Navigator 3.0

Created by
You do not create MimeType objects yourself. These objects are predefined JavaScript objects that you access through the mimeTypes array of the navigator or Plugin object:
navigator.mimeTypes[index]
where index is either an integer representing a MIME type supported by the client or a string containing the type of a MimeType object (from the MimeType.type property).
Description
Each MimeType object is an element in a mimeTypes array. The mimeTypes array is a property of both navigator and Plugin objects. For example, the following table summarizes the values for displaying JPEG images:
	Expression
	Value

	navigator.mimeTypes["image/jpeg"].type
	image/jpeg

	navigator.mimeTypes["image/jpeg"].description
	JPEG Image

	navigator.mimeTypes["image/jpeg"].suffixes
	jpeg, jpg, jpe, jfif, pjpeg, pjp

	navigator.mimeTypes["image/jpeg"].enabledPlugins
	null

Property Summary
	description
	A description of the MIME type.

	enabledPlugin
	Reference to the Plugin object configured for the MIME type.

	suffixes
	A string listing possible filename extensions for the MIME type, for example "mpeg, mpg, mpe, mpv, vbs, mpegv".

	type
	The name of the MIME type, for example "video/mpeg" or "audio/x-wav".

Methods
None.
Examples
The following code displays the type, description, suffixes, and enabledPlugin properties for each MimeType object on a client:
document.writeln("<TABLE BORDER=1><TR VALIGN=TOP>",
 "<TH ALIGN=left>i",
 "<TH ALIGN=left>type",
 "<TH ALIGN=left>description",
 "<TH ALIGN=left>suffixes",
 "<TH ALIGN=left>enabledPlugin.name</TR>")
for (i=0; i < navigator.mimeTypes.length; i++) {
 document.writeln("<TR VALIGN=TOP><TD>",i,
 "<TD>",navigator.mimeTypes[i].type,
 "<TD>",navigator.mimeTypes[i].description,
 "<TD>",navigator.mimeTypes[i].suffixes)
 if (navigator.mimeTypes[i].enabledPlugin==null) {
 document.writeln(
 "<TD>None",
 "</TR>")
 } else {
 document.writeln(
 "<TD>",navigator.mimeTypes[i].enabledPlugin.name,
 "</TR>")
 }
}
document.writeln("</TABLE>")
The preceding example displays output similar to the following:
	i
	type
	description
	suffixes
	enabledPlugin.name

	0
	audio/aiff
	AIFF
	aif, aiff
	LiveAudio

	1
	audio/wav
	WAV
	wav
	LiveAudio

	2
	audio/x-midi
	MIDI
	mid, midi
	LiveAudio

	3
	audio/midi
	MIDI
	mid, midi
	LiveAudio

	4
	video/msvideo
	Video for Windows
	avi
	NPAVI32 Dynamic Link Library

	5
	*
	Netscape Default Plugin
	
	Netscape Default Plugin

	6
	zz-application/zz-winassoc-TGZ
	
	TGZ
	None

See also
navigator, navigator.mimeTypes, Plugin
Properties
description
A human-readable description of the data type described by the MIME type object.
	Property of
	MimeType

	Read-only
	

	Implemented in
	Navigator 3.0

enabledPlugin
The Plugin object for the plug-in that is configured for the specified MIME type If the MIME type does not have a plug-in configured, enabledPlugin is null.
	Property of
	MimeType

	Read-only
	

	Implemented in
	Navigator 3.0

Description
Use the enabledPlugin property to determine which plug-in is configured for a specific MIME type. Each plug-in may support multiple MIME types, and each MIME type could potentially be supported by multiple plug-ins. However, only one plug-in can be configured for a MIME type. (On Macintosh and Unix, the user can configure the handler for each MIME type; on Windows, the handler is determined at browser start-up time.)
The enabledPlugin property is a reference to a Plugin object that represents the plug-in that is configured for the specified MIME type.
You might need to know which plug-in is configured for a MIME type, for example, to dynamically emit an EMBED tag on the page if the user has a plug-in configured for the MIME type.
Examples
The following example determines whether the Shockwave plug-in is installed. If it is, a movie is displayed.
// Can we display Shockwave movies?
mimetype = navigator.mimeTypes["application/x-director"]
if (mimetype) {
 // Yes, so can we display with a plug-in?
 plugin = mimetype.enabledPlugin
 if (plugin)
 // Yes, so show the data in-line
 document.writeln("Here\'s a movie: <EMBED SRC=mymovie.dir HEIGHT=100 WIDTH=100>")
 else
 // No, so provide a link to the data
 document.writeln("Click here to see a movie.")
 } else {
 // No, so tell them so
 document.writeln("Sorry, can't show you this cool movie.")
}
suffixes
A string listing possible file suffixes (also known as filename extensions) for the MIME type.
	Property of
	MimeType

	Read-only
	

	Implemented in
	Navigator 3.0

Description
The suffixes property is a string consisting of each valid suffix (typically three letters long) separated by commas. For example, the suffixes for the "audio/x-midi" MIME type are "mid, midi".
type
A string specifying the name of the MIME type. This string distinguishes the MIME type from all others; for example "video/mpeg" or "audio/x-wav".
	Property of
	MimeType

	Read-only
	

	Implemented in
	Navigator 3.0

Property of
MimeType
Plugin
A plug-in module installed on the client.
	Client-side object
	

	Implemented in
	Navigator 3.0

Created by
Plugin objects are predefined JavaScript objects that you access through the navigator.plugins array.
Description
A Plugin object is a plug-in installed on the client. A plug-in is a software module that the browser can invoke to display specialized types of embedded data within the browser. The user can obtain a list of installed plug-ins by choosing About Plug-ins from the Help menu.
Each Plugin object is itself array containing one element for each MIME type supported by the plug-in. Each element of the array is a MimeType object. For example, the following code displays the type and description properties of the first Plugin object's first MimeType object.
myPlugin=navigator.plugins[0]
myMimeType=myPlugin[0]
document.writeln('myMimeType.type is ',myMimeType.type,"
")
document.writeln('myMimeType.description is ',myMimeType.description)
The preceding code displays output similar to the following:
myMimeType.type is video/quicktime
myMimeType.description is QuickTime for Windows
The Plugin object lets you dynamically determine which plug-ins are installed on the client. You can write scripts to display embedded plug-in data if the appropriate plug-in is installed, or display some alternative information such as images or text if not.
Plug-ins can be platform dependent and configurable, so a Plugin object's array of MimeType objects can vary from platform to platform, and from user to user.
Each Plugin object is an element in the plugins array.
When you use the EMBED tag to generate output from a plug-in application, you are not creating a Plugin object. Use the document.embeds array to refer to plug-in instances created with EMBED tags. See the document.embeds array.
Property Summary
	description
	A description of the plug-in.

	filename
	Name of the plug-in file on disk.

	length
	Number of elements in the plug-in's array of MimeType objects.

	name
	Name of the plug-in.

Examples
Example 1. The user can obtain a list of installed plug-ins by choosing About Plug-ins from the Help menu. To see the code the browser uses for this report, choose About Plug-ins from the Help menu, then choose Page Source from the View menu.
Example 2. The following code assigns shorthand variables for the predefined LiveAudio properties.
var myPluginName = navigator.plugins["LiveAudio"].name
var myPluginFile = navigator.plugins["LiveAudio"].filename
var myPluginDesc = navigator.plugins["LiveAudio"].description
Example 3. The following code displays the message "LiveAudio is configured for audio/wav" if the LiveAudio plug-in is installed and is enabled for the "audio/wav" MIME type:
var myPlugin = navigator.plugins["LiveAudio"]
var myType = myPlugin["audio/wav"]
if (myType && myType.enabledPlugin == myPlugin)
 document.writeln("LiveAudio is configured for audio/wav")
Example 4. The following expression represents the number of MIME types that Shockwave can display:
navigator.plugins["Shockwave"].length
Example 5. The following code displays the name, filename, description, and length properties for each Plugin object on a client:
document.writeln("<TABLE BORDER=1><TR VALIGN=TOP>",
 "<TH ALIGN=left>i",
 "<TH ALIGN=left>name",
 "<TH ALIGN=left>filename",
 "<TH ALIGN=left>description",
 "<TH ALIGN=left># of types</TR>")
for (i=0; i < navigator.plugins.length; i++) {
 document.writeln("<TR VALIGN=TOP><TD>",i,
 "<TD>",navigator.plugins[i].name,
 "<TD>",navigator.plugins[i].filename,
 "<TD>",navigator.plugins[i].description,
 "<TD>",navigator.plugins[i].length,
 "</TR>")
}
document.writeln("</TABLE>")
The preceding example displays output similar to the following:
	i
	name
	filename
	description
	# of types

	0
	QuickTime Plug-In
	d:\nettools\netscape\nav30\Program\
plugins\NPQTW32.DLL
	QuickTime Plug-In for Win32 v.1.0.0
	1

	1
	LiveAudio
	d:\nettools\netscape\nav30\Program\
plugins\NPAUDIO.DLL
	LiveAudio - Netscape Navigator sound playing component
	7

	2
	NPAVI32 Dynamic Link Library
	d:\nettools\netscape\nav30\Program\
plugins\npavi32.dll
	NPAVI32, avi plugin DLL
	2

	3
	Netscape Default Plugin
	d:\nettools\netscape\nav30\Program\
plugins\npnul32.dll
	Null Plugin
	1

Properties
description
A human-readable description of the plug-in. The text is provided by the plug-in developers.
	Property of
	Plugin

	Read-only
	

	Implemented in
	Navigator 3.0

filename
The name of a plug-in file on disk.
	Property of
	Plugin

	Read-only
	

	Implemented in
	Navigator 3.0

Description
The filename property is the plug-in program's file name and is supplied by the plug-in itself. This name may vary from platform to platform.
Examples
See the examples for Plugin.
length
The number of elements in the plug-in's array of MimeType objects.
	Property of
	Plugin

	Read-only
	

	Implemented in
	Navigator 3.0

name
A string specifying the plug-in's name.
	Property of
	Plugin

	Read-only
	

	Implemented in
	Navigator 3.0

Security
Navigator 3.0: This property is tainted by default. For information on data tainting, see "JavaScript Security".
Description
The plug-in's name, supplied by the plug-in itself. Each plug-in should have a name that uniquely identifies it.
Chapter 9
Events and Event Handlers
This chapter contains the event object and the event handlers that are used with client-side objects in JavaScript to evoke particular actions. In addition, it contains general information about using events and event handlers.
Table 9.1 lists the one object in this chapter.
Table 9.1 Event-related object
	Object
	Description

	event
	Represents a JavaScript event. Passed to every event handler.

Table 9.2 summarizes the JavaScript event handlers.
Table 9.2 Events and their corresponding event handlers.
	Event
	Event handler
	Event occurs when...

	abort
	onAbort
	The user aborts the loading of an image (for example by clicking a link or clicking the Stop button).

	blur
	onBlur
	A form element loses focus or when a window or frame loses focus.

	change
	onChange
	A select, text, or textarea field loses focus and its value has been modified.

	click
	onClick
	An object on a form is clicked.

	dblclick
	onDblClick
	The user double-clicks a form element or a link.

	dragdrop
	onDragDrop
	The user drops an object onto the browser window, such as dropping a file on the browser window.

	error
	onError
	The loading of a document or image causes an error.

	focus
	onFocus
	A window, frame, or frameset receives focus or when a form element receives input focus.

	keydown
	onKeyDown
	The user depresses a key.

	keypress
	onKeyPress
	The user presses or holds down a key.

	keyup
	onKeyUp
	The user releases a key.

	load
	onLoad
	The browser finishes loading a window or all of the frames within a FRAMESET tag.

	mousedown
	onMouseDown
	The user depresses a mouse button.

	mousemove
	onMouseMove
	The user moves the cursor.

	mouseout
	onMouseOut
	The cursor leaves an area (client-side image map) or link from inside that area or link.

	mouseover
	onMouseOver
	The cursor moves over an object or area from outside that object or area.

	mouseup
	onMouseUp
	The user releases a mouse button.

	move
	onMove
	The user or script moves a window or frame.

	reset
	onReset
	The user resets a form (clicks a Reset button).

	resize
	onResize
	The user or script resizes a window or frame.

	select
	onSelect
	The user selects some of the text within a text or textarea field.

	submit
	onSubmit
	The user submits a form.

	unload
	onUnload
	The user exits a document.

General Information about Events
JavaScript applications in the browser are largely event-driven. Events are actions that occur usually as a result of something the user does. For example, clicking a button is an event, as is changing a text field or moving the mouse over a link. For your script to react to an event, you define event handlers, such as onChange and onClick.
Defining Event Handlers
If an event applies to an HTML tag, then you can define an event handler for it. The name of an event handler is the name of the event, preceded by "on". For example, the event handler for the focus event is onFocus.
To create an event handler for an HTML tag, add an event handler attribute to the tag. Put JavaScript code in quotation marks as the attribute value. The general syntax is
<TAG eventHandler="JavaScript Code">
where TAG is an HTML tag and eventHandler is the name of the event handler. For example, suppose you have created a JavaScript function called compute. You can cause the browser to perform this function when the user clicks a button by assigning the function call to the button's onClick event handler:
<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">
You can put any JavaScript statements inside the quotation marks following onClick. These statements are executed when the user clicks the button. If you want to include more than one statement, separate statements with a semicolon.
When you create an event handler, the corresponding JavaScript object gets a property with the name of the event handler in lower case letters. (In Navigator 4.0, you can also use the mixed case name of the event handler for the property name.) This property allows you to access the object's event handler. For example, in the preceding example, JavaScript creates a Button object with an onclick property whose value is "compute(this.form)".
Chapter 7, "JavaScript Security," in JavaScript Guide contains more information about creating and using event handlers.
Events in Navigator 4.0
In Navigator 4.0, JavaScript includes event objects as well as event handlers. Each event has an event object associated with it. The event object provides information about the event, such as the type of event and the location of the cursor at the time of the event. When an event occurs, and if an event handler has been written to handle the event, the event object is sent as an argument to the event handler.
Typically, the object on which the event occurs handles the event. For example, when the user clicks a button, it is often the button's event handler that handles the event. Sometimes you may want the Window or document object to handle certain types of events. For example, you may want the document object to handle all MouseDown events no matter where they occur in the document. JavaScript's event capturing model allows you to define methods that capture and handle events before they reach their intended target.
In addition to providing the event object, Navigator 4.0 allows a Window or document to capture and handle an event before it reaches its intended target. To accomplish this, the Window, document, and Layer objects have these new methods:
· captureEvents
· releaseEvents
· routeEvent
· handleEvent (Not a method of the Layer object)
For example, suppose you want to capture all click events that occur in a window. First, you need to set up the window to capture click events:
window.captureEvents(Event.CLICK);
The argument to Window.captureEvents is a property of the event object and indicates the type of event to capture. To capture multiple events, the argument is a list separated by vertical slashes (|). For example:
window.captureEvents(Event.CLICK | Event.MOUSEDOWN | Event.MOUSEUP)
Next, you need to define a function that handles the event. The argument evnt is the event object for the event.
function clickHandler(evnt) {
 //What goes here depends on how you want to handle the event.
 //This is described below.
}
You have four options for handling the event:
· Return true. In the case of a link, the link is followed and no other event handler is checked. If the event cannot be canceled, this ends the event handling for that event.
function clickHandler(evnt) { return true; }
· Return false. In the case of a link, the link is not followed. If the event is non-cancelable, this ends the event handling for that event.
function clickHandler(evnt) { return false; }
· Call routeEvent. JavaScript looks for other event handlers for the event. If another object is attempting to capture the event (such as the document), JavaScript calls its event handler. If no other object is attempting to capture the event, JavaScript looks for an event handler for the event's original target (such as a button). The routeEvent method returns the value returned by the event handler. The capturing object can look at this return value and decide how to proceed.
function clickHandler(evnt) {
 var retval = routeEvent(evnt);
 if (retval == false) return false;
 else return true;
}
Note: When routeEvent calls an event handler, the event handler is activated. If routeEvent calls an event handler whose function is to display a new page, the action takes place without returning to the capturing object.
· Call the handleEvent method of an event receiver. Any object that can register event handlers is an event receiver. This method explicitly calls the event handler of the event receiver and bypasses the capturing hierarchy. For example, if you wanted all click events to go to the first link on the page, you could use:
function clickHandler(evnt) {
 window.document.links[0].handleEvent(evnt);
}
As long as the link has an onClick handler, the link handles any click event it receives.
Finally, you need to register the function as the window's event handler for that event:
window.onClick = clickHandler;
Important
If a window with frames wants to capture events in pages loaded from different locations, you need to use captureEvents in a signed script and call Window.enableExternalCapture.
In the following example, the window and document capture and release events:
<HTML>
<SCRIPT>
function fun1(evnt) {
 alert ("The window got an event of type: " + evnt.type +
 " and will call routeEvent.");
 window.routeEvent(evnt);
 alert ("The window returned from routeEvent.");
 return true;
}
function fun2(evnt) {
 alert ("The document got an event of type: " + evnt.type);
 return false;
}
function setWindowCapture() {
 window.captureEvents(Event.CLICK);
}
function releaseWindowCapture() {
 window.releaseEvents(Event.CLICK);
}
function setDocCapture() {
 document.captureEvents(Event.CLICK);
}
function releaseDocCapture() {
 document.releaseEvents(Event.CLICK);
}
window.onclick=fun1;
document.onclick=fun2;
</SCRIPT>
...
</HTML>
event
The event object contains properties that describe a JavaScript event, and is passed as an argument to an event handler when the event occurs.
	Client-side object
	

	Implemented in
	Navigator 4.0

In the case of a mouse-down event, for example, the event object contains the type of event (in this case MouseDown), the x and y position of the cursor at the time of the event, a number representing the mouse button used, and a field containing the modifier keys (Control, Alt, Meta, or Shift) that were depressed at the time of the event. The properties used within the event object vary from one type of event to another. This variation is provided in the descriptions of individual event handlers.
For more information, see "General Information about Events".
Created by
event objects are created by Communicator when an event occurs. You do not create them yourself.
Security
Setting any property of this object requires the UniversalBrowserWrite privilege. In addition, getting the data property of the DragDrop event requires the UniversalBrowserRead privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Property Summary
Not all of these properties are relevant to each event type. To learn which properties are used by an event, see the "Event object properties used" section of the individual event handler.
	target
	String representing the object to which the event was originally sent. (All events)

	type
	String representing the event type. (All events)

	data
	Returns an array of strings containing the URLs of the dropped objects. Passed with the DragDrop event.

	height
	Represents the height of the window or frame.

	layerX
	Number specifying either the object width when passed with the resize event, or the cursor's horizontal position in pixels relative to the layer in which the event occurred. Note that layerX is synonymous with x.

	layerY
	Number specifying either the object height when passed with the resize event, or the cursor's vertical position in pixels relative to the layer in which the event occurred. Note that layerY is synonymous with y.

	modifiers
	String specifying the modifier keys associated with a mouse or key event. Modifier key values are: ALT_MASK, CONTROL_MASK, SHIFT_MASK, and META_MASK.

	pageX
	Number specifying the cursor's horizontal position in pixels, relative to the page.

	pageY
	Number specifying the cursor's vertical position in pixels relative to the page.

	screenX
	Number specifying the cursor's horizontal position in pixels, relative to the screen.

	screenY
	Number specifying the cursor's vertical position in pixels, relative to the screen.

	which
	Number specifying either the mouse button that was pressed or the ASCII value of a pressed key. For a mouse, 1 is the left button, 2 is the middle button, and 3 is the right button.

	width
	Represents the width of the window or frame.

Example
The following example uses the event object to provide the type of event to the alert message.
<A HREF="http://home.netscape.com" onClick='alert("Link got an event: "
+ event.type)'>Click for link event
The following example uses the event object in an explicitly called event handler.
<SCRIPT>
function fun1(evnt) {
 alert ("Document got an event: " + evnt.type);
 alert ("x position is " + evnt.layerX);
 alert ("y position is " + evnt.layerY);
 if (evnt.modifiers & Event.ALT_MASK)
 alert ("Alt key was down for event.");
 return true;
 }
document.onmousedown = fun1;
</SCRIPT>
onAbort
Executes JavaScript code when an abort event occurs; that is, when the user aborts the loading of an image (for example by clicking a link or clicking the Stop button).
	Event handler for
	Image

	Implemented in
	Navigator 3.0

Syntax
onAbort="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

Examples
In the following example, an onAbort handler in an Image object displays a message when the user aborts the image load:
<IMG NAME="aircraft" SRC="f15e.gif"
 onAbort="alert('You didn\'t get to see the image!')">
onBlur
Executes JavaScript code when a blur event occurs; that is, when a form element loses focus or when a window or frame loses focus.
	Event handler for
	Button, Checkbox, FileUpload, Layer, Password, Radio, Reset, Select, Submit, Text, Textarea, Window

	Implemented in
	Navigator 2.0
Navigator 3.0: event handler of Button, Checkbox, FileUpload, Frame, Password, Radio, Reset, Submit, and Window

Syntax
onBlur="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Description
The blur event can result from a call to the Window.blur method or from the user clicking the mouse on another object or window or tabbing with the keyboard.
For windows, frames, and framesets, onBlur specifies JavaScript code to execute when a window loses focus.
A frame's onBlur event handler overrides an onBlur event handler in the BODY tag of the document loaded into frame.
Note In Navigator 3.0, on some platforms placing an onBlur event handler in a FRAMESET tag has no effect.
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

Examples
Example 1: Validate form input. In the following example, userName is a required text field. When a user attempts to leave the field, the onBlur event handler calls the required function to confirm that userName has a legal value.
<INPUT TYPE="text" VALUE="" NAME="userName"
 onBlur="required(this.value)">
Example 2: Change the background color of a window. In the following example, a window's onBlur and onFocus event handlers change the window's background color depending on whether the window has focus.
<BODY BGCOLOR="lightgrey"
 onBlur="document.bgColor='lightgrey'"
 onFocus="document.bgColor='antiquewhite'">
Example 3: Change the background color of a frame. The following example creates four frames. The source for each frame, onblur2.html has the BODY tag with the onBlur and onFocus event handlers shown in Example 1. When the document loads, all frames are light grey. When the user clicks a frame, the onFocus event handler changes the frame's background color to antique white. The frame that loses focus is changed to light grey. Note that the onBlur and onFocus event handlers are within the BODY tag, not the FRAME tag.
<FRAMESET ROWS="50%,50%" COLS="40%,60%">
<FRAME SRC=onblur2.html NAME="frame1">
<FRAME SRC=onblur2.html NAME="frame2">
<FRAME SRC=onblur2.html NAME="frame3">
<FRAME SRC=onblur2.html NAME="frame4">
</FRAMESET>
The following code has the same effect as the previous code, but is implemented differently. The onFocus and onBlur event handlers are associated with the frame, not the document. The onBlur and onFocus event handlers for the frame are specified by setting the onblur and onfocus properties.
<SCRIPT>
function setUpHandlers() {
 for (var i = 0; i < frames.length; i++) {
 frames[i].onfocus=new Function("document.bgColor='antiquewhite'")
 frames[i].onblur=new Function("document.bgColor='lightgrey'")
 }
}
</SCRIPT>
<FRAMESET ROWS="50%,50%" COLS="40%,60%" onLoad=setUpHandlers()>
<FRAME SRC=onblur2.html NAME="frame1">
<FRAME SRC=onblur2.html NAME="frame2">
<FRAME SRC=onblur2.html NAME="frame3">
<FRAME SRC=onblur2.html NAME="frame4">
</FRAMESET>
Example 4: Close a window. In the following example, a window's onBlur event handler closes the window when the window loses focus.
<BODY onBlur="window.close()">
This is some text
</BODY>
onChange
Executes JavaScript code when a change event occurs; that is, when a Select, Text, or Textarea field loses focus and its value has been modified.
	Event handler for
	FileUpload, Select, Text, Textarea

	Implemented in
	Navigator 2.0 event handler for Select, Text, and Textarea
Navigator 3.0: added as event handler of FileUpload

Syntax
onChange="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Description
Use onChange to validate data after it is modified by a user.
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

Examples
In the following example, userName is a text field. When a user changes the text and leaves the field, the onChange event handler calls the checkValue function to confirm that userName has a legal value.
<INPUT TYPE="text" VALUE="" NAME="userName"
 onChange="checkValue(this.value)">
onClick
Executes JavaScript code when a click event occurs; that is, when an object on a form is clicked. (A Click event is a combination of the MouseDown and MouseUp events).
	Event handler for
	Button, document, Checkbox, Link, Radio, Reset, Submit

	Implemented in
	Navigator 2.0
Navigator 3.0: added the ability to return false to cancel the action associated with a click event

Syntax
onClick="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	When a link is clicked,
layerX, layerY,
pageX, pageY,
screenX, screenY
	Represent the cursor location at the time the event occurred.

	which
	Represents 1 for a left-mouse click and 3 for a right-mouse click.

	modifiers
	Contains the list of modifier keys held down when the event occurred.

Description
For checkboxes, links, radio buttons, reset buttons, and submit buttons, onClick can return false to cancel the action normally associated with a click event.
For example, the following code creates a link that, when clicked, displays a confirm dialog box. If the user clicks the link and then chooses cancel, the page specified by the link is not loaded.
<A HREF = "http://home.netscape.com/"
 onClick="return confirm('Load Netscape home page?')">
Netscape
If the event handler returns false, the default action of the object is canceled as follows:
· Buttons--no default action; nothing is canceled
· Radio buttons and checkboxes--nothing is set
· Submit buttons--form is not submitted
· Reset buttons--form is not reset
Note In Navigator 3.0, on some platforms, returning false in an onClick event handler for a reset button has no effect.
Examples
Example 1: Call a function when a user clicks a button. Suppose you have created a JavaScript function called compute. You can execute the compute function when the user clicks a button by calling the function in the onClick event handler, as follows:
<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">
In the preceding example, the keyword this refers to the current object; in this case, the Calculate button. The construct this.form refers to the form containing the button.
For another example, suppose you have created a JavaScript function called pickRandomURL that lets you select a URL at random. You can use onClick to specify a value for the HREF attribute of the A tag dynamically, as shown in the following example:
<A HREF=""
 onClick="this.href=pickRandomURL()"
 onMouseOver="window.status='Pick a random URL'; return true">
Go!
In the above example, onMouseOver specifies a custom message for the browser's status bar when the user places the mouse pointer over the Go! anchor. As this example shows, you must return true to set the window.status property in the onMouseOver event handler.
Example 2: Cancel the checking of a checkbox. The following example creates a checkbox with onClick. The event handler displays a confirm that warns the user that checking the checkbox purges all files. If the user chooses Cancel, onClick returns false and the checkbox is not checked.
<INPUT TYPE="checkbox" NAME="check1" VALUE="check1"
 onClick="return confirm('This purges all your files. Are you sure?')"> Remove files
onDblClick
Executes JavaScript code when a DblClick event occurs; that is, when the user double-clicks a form element or a link.
	Event handler for
	document, Link

	Implemented in
	Navigator 4.0

Syntax
onDblClick="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Note
DblClick is not implemented on the Macintosh.
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	layerX, layerY,
pageX, pageY,
screenX, screenY
	Represent the cursor location at the time the event occurred.

	which
	Represents 1 for a left-mouse double-click and 3 for a right-mouse double-click.

	modifiers
	Contains the list of modifier keys held down when the event occurred.

onDragDrop
Executes JavaScript code when a DragDrop event occurs; that is, when the user drops an object onto the browser window, such as dropping a file.
	Event handler for
	Window

	Implemented in
	Navigator 4.0

Syntax
onDragDrop="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	data
	Returns an Array of Strings containing the URLs of the dropped objects.

	modifiers
	Contains the list of modifier keys held down when the event occurred.

	screenX,
screenY
	Represent the cursor location at the time the event occurred.

Security
Getting the data property of the DragDrop event requires the UniversalBrowserRead privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Description
The DragDrop event is fired whenever a system item (file, shortcut, and so on) is dropped onto the browser window using the native system's drag and drop mechanism. The normal response for the browser is to attempt to load the item into the browser window. If the event handler for the DragDrop event returns true, the browser loads the item normally. If the event handler returns false, the drag and drop is canceled.

onError
Executes JavaScript code when an error event occurs; that is, when the loading of a document or image causes an error.
	Event handler for
	Image, Window

	Implemented in
	Navigator 3.0

Syntax
onError="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Description
An error event occurs only when a JavaScript syntax or runtime error occurs, not when a browser error occurs. For example, if you try set window.location.href='notThere.html' and notThere.html does not exist, the resulting error message is a browser error message; therefore, onError would not intercept that message. However, an error event is triggered by a bad URL within an IMG tag or by corrupted image data.
window.onerror applies only to errors that occur in the window containing window.onerror, not in other windows.
onError can be any of the following:
· null to suppress all JavaScript error dialogs. Setting window.onerror to null means your users won't see JavaScript errors caused by your own code.
· The name of a function that handles errors (arguments are message text, URL, and line number of the offending line). To suppress the standard JavaScript error dialog, the function must return true. See Example 3 below.
· A variable or property that contains null or a valid function reference.
If you write an error-handling function, you have three options for reporting errors:
· Trace errors but let the standard JavaScript dialog report them (use an error handling function that returns false or does not return a value)
· Report errors yourself and disable the standard error dialog (use an error handling function that returns true)
· Turn off all error reporting (set the onError event handler to null)
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

Examples
Example 1: Null event handler. In the following IMG tag, the code onError="null" suppresses error messages if errors occur when the image loads.
<IMG NAME="imageBad1" SRC="corrupt.gif" ALIGN="left" BORDER="2"
 onError="null">
Example 2: Null event handler for a window. The onError event handler for windows cannot be expressed in HTML. Therefore, you must spell it all lowercase and set it in a SCRIPT tag. The following code assigns null to the onError handler for the entire window, not just the Image object. This suppresses all JavaScript error messages, including those for the Image object.
<SCRIPT>
window.onerror=null
</SCRIPT>

However, if the Image object has a custom onError event handler, the handler would execute if the image had an error. This is because window.onerror=null suppresses JavaScript error messages, not onError event handlers.
<SCRIPT>
window.onerror=null
function myErrorFunc() {
 alert("The image had a nasty error.")
}
</SCRIPT>
<IMG NAME="imageBad1" SRC="corrupt.gif" ALIGN="left" BORDER="2"
 onError="myErrorFunc()">
In the following example, window.onerror=null suppresses all error reporting. Without onerror=null, the code would cause a stack overflow error because of infinite recursion.
<SCRIPT>
window.onerror = null;
function testErrorFunction() {
 testErrorFunction();
}
</SCRIPT>
<BODY onload="testErrorFunction()">
test message
</BODY>
Example 3: Error handling function. The following example defines a function, myOnError, that intercepts JavaScript errors. The function uses three arrays to store the message, URL, and line number for each error. When the user clicks the Display Error Report button, the displayErrors function opens a window and creates an error report in that window. Note that the function returns true to suppress the standard JavaScript error dialog.
<SCRIPT>
window.onerror = myOnError
msgArray = new Array()
urlArray = new Array()
lnoArray = new Array()
function myOnError(msg, url, lno) {
 msgArray[msgArray.length] = msg
 urlArray[urlArray.length] = url
 lnoArray[lnoArray.length] = lno
 return true
}
function displayErrors() {
 win2=window.open('','window2','scrollbars=yes')
 win2.document.writeln('Error Report<P>')
 for (var i=0; i < msgArray.length; i++) {
 win2.document.writeln('Error in file: ' + urlArray[i] + '
')
 win2.document.writeln('Line number: ' + lnoArray[i] + '
')
 win2.document.writeln('Message: ' + msgArray[i] + '<P>')
 }
 win2.document.close()
}
</SCRIPT>
<BODY onload="noSuchFunction()">
<FORM>

<INPUT TYPE="button" VALUE="This button has a syntax error"
 onClick="alert('unterminated string)">
<P><INPUT TYPE="button" VALUE="Display Error Report"
 onClick="displayErrors()">
</FORM>
This example produces the following output:
Error Report
Error in file: file:///c%7C/temp/techrror.html
Line number: 34
Message: unterminated string literal
Error in file: file:///c%7C/temp/techrror.html
Line number: 34
Message: missing) after argument list
Error in file: file:///c%7C/temp/techrror.html
Line number: 30
Message: noSuchFunction is not defined
Example 4: Event handler calls a function. In the following IMG tag, onError calls the function badImage if errors occur when the image loads.
<SCRIPT>
function badImage(theImage) {
 alert('Error: ' + theImage.name + ' did not load properly.')
}
</SCRIPT>
<FORM>
<IMG NAME="imageBad2" SRC="orca.gif" ALIGN="left" BORDER="2"
 onError="badImage(this)">
</FORM>
onFocus
Executes JavaScript code when a focus event occurs; that is, when a window, frame, or frameset receives focus or when a form element receives input focus.
	Event handler for
	Button, Checkbox, FileUpload, Layer, Password, Radio, Reset, Select, Submit, Text, Textarea, Window

	Implemented in
	Navigator 2.0
Navigator 3.0: event handler of Button, Checkbox, FileUpload, Frame, Password, Radio, Reset, Submit, and Window
Navigator 4.0: event handler of Layer

Syntax
onFocus="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Description
The focus event can result from a focus method or from the user clicking the mouse on an object or window or tabbing with the keyboard. Selecting within a field results in a select event, not a focus event. onFocus executes JavaScript code when a focus event occurs.
A frame's onFocus event handler overrides an onFocus event handler in the BODY tag of the document loaded into frame.
Note that placing an alert in an onFocus event handler results in recurrent alerts: when you press OK to dismiss the alert, the underlying window gains focus again and produces another focus event.
Note
In Navigator 3.0, on some platforms, placing an onFocus event handler in a FRAMESET tag has no effect.
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

Examples
The following example uses an onFocus handler in the valueField Textarea object to call the valueCheck function.
<INPUT TYPE="textarea" VALUE="" NAME="valueField"
 onFocus="valueCheck()">
onKeyDown
Executes JavaScript code when a KeyDown event occurs; that is, when the user depresses a key.
	Event handler for
	document, Image, Link, Textarea

	Implemented in
	Navigator 4.0

Syntax
onKeyDown="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	layerX, layerY,
pageX, pageY,
screenX, screenY
	For an event over a window, these represent the cursor location at the time the event occurred. For an event over a form, they represent the position of the form element.

	which
	Represents the ASCII value of the key pressed. To get the actual letter, number, or symbol of the pressed key, use the String.fromCharCode method. To set this property when the ASCII value is unknown, use the String.charCodeAt method.

	modifiers
	Contains the list of modifier keys held down when the event occurred.

Description
A KeyDown event always occurs before a KeyPress event. If onKeyDown returns false, no KeyPress events occur. This prevents KeyPress events occurring due to the user holding down a key.
onKeyPress
Executes JavaScript code when a KeyPress event occurs; that is, when the user presses or holds down a key.
	Event handler for
	document, Image, Link, Textarea

	Implemented in
	Navigator 4.0

Syntax
onKeyPress="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	layerX, layerY,
pageX, pageY,
screenX, screenY
	For an event over a window, these represent the cursor location at the time the event occurred. For an event over a form, they represent the position of the form element.

	which
	Represents the ASCII value of the key pressed. To get the actual letter, number, or symbol of the pressed key, use the String.fromCharCode method. To set this property when the ASCII value is unknown, use the String.charCodeAt method.

	modifiers
	Contains the list of modifier keys held down when the event occurred.

Description
A KeyPress event occurs immediately after a KeyDown event only if onKeyDown returns something other than false. A KeyPress event repeatedly occurs until the user releases the key. You can cancel individual KeyPress events.
onKeyUp
Executes JavaScript code when a KeyUp event occurs; that is, when the user releases a key.
	Event handler for
	document, Image, Link, Textarea

	Implemented in
	Navigator 4.0

Syntax
onKeyUp="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	layerX, layerY,
pageX, pageY,
screenX, screenY
	For an event over a window, these represent the cursor location at the time the event occurred. For an event over a form, they represent the position of the form element.

	which
	Represents the ASCII value of the key pressed. To get the actual letter, number, or symbol of the pressed key, use the String.fromCharCode method. To set this property when the ASCII value is unknown, use the String.charCodeAt method.

	modifiers
	Contains the list of modifier keys held down when the event occurred.

onLoad
Executes JavaScript code when a load event occurs; that is, when the browser finishes loading a window or all frames within a FRAMESET tag.
	Event handler for
	Image, Layer, Window

	Implemented in
	Navigator 2.0
Navigator 3.0: event handler of Image

Syntax
onLoad="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Description
Use the onLoad event handler within either the BODY or the FRAMESET tag, for example, <BODY onLoad="...">.
In a FRAMESET and FRAME relationship, an onLoad event within a frame (placed in the BODY tag) occurs before an onLoad event within the FRAMESET (placed in the FRAMESET tag).
For images, the onLoad event handler indicates the script to execute when an image is displayed. Do not confuse displaying an image with loading an image. You can load several images, then display them one by one in the same Image object by setting the object's src property. If you change the image displayed in this way, onLoad executes every time an image is displayed, not just when the image is loaded into memory.
If you specify an onLoad event handler for an Image object that displays a looping GIF animation (multi-image GIF), each loop of the animation triggers the onLoad event, and the event handler executes once for each loop.
You can use the onLoad event handler to create a JavaScript animation by repeatedly setting the src property of an Image object. See Image for information.
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	width, height
	For an event over a window, but not over a layer, these represent the width and height of the window.

Examples
Example 1: Display message when page loads. In the following example, the onLoad event handler displays a greeting message after a Web page is loaded.
<BODY onLoad="window.alert("Welcome to the Brave New World home page!")>
Example 2: Display alert when image loads. The following example creates two Image objects, one with the Image constructor and one with the IMG tag. Each Image object has an onLoad event handler that calls the displayAlert function, which displays an alert. For the image created with the IMG tag, the alert displays the image name. For the image created with the Image constructor, the alert displays a message without the image name. This is because the onLoad handler for an object created with the Image constructor must be the name of a function, and it cannot specify parameters for the displayAlert function.
<SCRIPT>
imageA = new Image(50,50)
imageA.onload=displayAlert
imageA.src="cyanball.gif"
function displayAlert(theImage) {
 if (theImage==null) {
 alert('An image loaded')
 }
 else alert(theImage.name + ' has been loaded.')
}
</SCRIPT>
<IMG NAME="imageB" SRC="greenball.gif" ALIGN="top"
 onLoad=displayAlert(this)>

Example 3: Looping GIF animation. The following example displays an image, birdie.gif, that is a looping GIF animation. The onLoad event handler for the image increments the variable cycles, which keeps track of the number of times the animation has looped. To see the value of cycles, the user clicks the button labeled Count Loops.
<SCRIPT>
var cycles=0
</SCRIPT>
<IMG ALIGN="top" SRC="birdie.gif" BORDER=0
 onLoad="++cycles">
<INPUT TYPE="button" VALUE="Count Loops"
 onClick="alert('The animation has looped ' + cycles + ' times.')">
Example 4: Change GIF animation displayed. The following example uses an onLoad event handler to rotate the display of six GIF animations. Each animation is displayed in sequence in one Image object. When the document loads, !anim0.html is displayed. When that animation completes, the onLoad event handler causes the next file, !anim1.html, to load in place of the first file. After the last animation, !anim5.html, completes, the first file is again displayed. Notice that the changeAnimation function does not call itself after changing the src property of the Image object. This is because when the src property changes, the image's onLoad event handler is triggered and the changeAnimation function is called.
<SCRIPT>
var whichImage=0
var maxImages=5
function changeAnimation(theImage) {
 ++whichImage
 if (whichImage <= maxImages) {
 var imageName="!anim" + whichImage + ".gif"
 theImage.src=imageName
 } else {
 whichImage=-1
 return
 }
}
</SCRIPT>
<IMG NAME="changingAnimation" SRC="!anim0.gif" BORDER=0 ALIGN="top"
 onLoad="changeAnimation(this)">
onMouseDown
Executes JavaScript code when a MouseDown event occurs; that is, when the user depresses a mouse button.
	Event handler for
	Button, document, Link

	Implemented in
	Navigator 4.0

Syntax
onMouseDown="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	layerX, layerY,
pageX, pageY,
screenX, screenY
	Represent the cursor location at the time the MouseDown event occurred.

	which
	Represents 1 for a left-mouse-button down and 3 for a right-mouse-button down.

	modifiers
	Contains the list of modifier keys held down when the MouseDown event occurred.

Description
If onMouseDown returns false, the default action (entering drag mode, entering selection mode, or arming a link) is canceled.
Arming is caused by a MouseDown over a link. When a link is armed it changes color to represent its new state.
onMouseMove
Executes JavaScript code when a MouseMove event occurs; that is, when the user moves the cursor.
	Event handler for
	None

	Implemented in
	Navigator 4.0

Syntax
onMouseMove="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event of
Because mouse movement happens so frequently, by default, onMouseMove is not an event of any object. You must explicitly set it to be associated with a particular object.
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	layerX, layerY,
pageX, pageY,
screenX, screenY
	Represent the cursor location at the time the MouseMove event occurred.

Description
The MouseMove event is sent only when a capture of the event is requested by an object (see "Events in Navigator 4.0").
onMouseOut
Executes JavaScript code when a MouseOut event occurs; that is, each time the mouse pointer leaves an area (client-side image map) or link from inside that area or link.
	Event handler for
	Layer, Link

	Implemented in
	Navigator 3.0

Syntax
onMouseOut="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Description
If the mouse moves from one area into another in a client-side image map, you'll get onMouseOut for the first area, then onMouseOver for the second.
Area objects that use the onMouseOut event handler must include the HREF attribute within the AREA tag.
You must return true within the event handler if you want to set the status or defaultStatus properties with onMouseOver.
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	layerX, layerY,
pageX, pageY,
screenX, screenY
	Represent the cursor location at the time the MouseOut event occurred.

Examples
See the examples for Link.
onMouseOver
Executes JavaScript code when a MouseOver event occurs; that is, once each time the mouse pointer moves over an object or area from outside that object or area.
	Event handler for
	Layer, Link

	Implemented in
	Navigator 2.0
Navigator 3.0: event handler of Area

Syntax
onMouseOver="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Description
If the mouse moves from one area into another in a client-side image map, you'll get onMouseOut for the first area, then onMouseOver for the second.
Area objects that use onMouseOver must include the HREF attribute within the AREA tag.
You must return true within the event handler if you want to set the status or defaultStatus properties with onMouseOver.
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	layerX, layerY,
pageX, pageY,
screenX, screenY
	Represent the cursor location at the time the MouseOver event occurred.

Examples
By default, the HREF value of an anchor displays in the status bar at the bottom of the browser when a user places the mouse pointer over the anchor. In the following example, onMouseOver provides the custom message "Click this if you dare."
<A HREF="http://home.netscape.com/"
 onMouseOver="window.status='Click this if you dare!'; return true">
Click me
See onClick for an example of using onMouseOver when the A tag's HREF attribute is set dynamically.
onMouseUp
Executes JavaScript code when a MouseUp event occurs; that is, when the user releases a mouse button.
	Event handler for
	Button, document, Link

	Implemented in
	Navigator 4.0

Syntax
onMouseUp="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	layerX, layerY,
pageX, pageY,
screenX, screenY
	Represent the cursor location at the time the MouseUp event occurred.

	which
	Represents 1 for a left-mouse-button up and 3 for a right-mouse-button up.

	modifiers
	Contains the list of modifier keys held down when the MouseUp event occurred.

Description
If onMouseUp returns false, the default action is canceled. For example, if onMouseUp returns false over an armed link, the link is not triggered. Also, if MouseUp occurs over an unarmed link (possibly due to onMouseDown returning false), the link is not triggered.
Note
Arming is caused by a MouseDown over a link. When a link is armed it changes color to represent its new state.
onMove
Executes JavaScript code when a move event occurs; that is, when the user or script moves a window or frame.
	Event handler for
	Window

	Implemented in
	Navigator 4.0

Syntax
onMove="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	screenX, screenY
	Represent the position of the top-left corner of the window or frame.

onReset
Executes JavaScript code when a reset event occurs; that is, when a user resets a form (clicks a Reset button).
	Event handler for
	Form

	Implemented in
	Navigator 3.0

Syntax
onReset="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Examples
The following example displays a Text object with the default value "CA" and a reset button. If the user types a state abbreviation in the Text object and then clicks the reset button, the original value of "CA" is restored. The form's onReset event handler displays a message indicating that defaults have been restored.
<FORM NAME="form1" onReset="alert('Defaults have been restored.')">
State:
<INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2"><P>
<INPUT TYPE="reset" VALUE="Clear Form" NAME="reset1">
</FORM>
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

onResize
Executes JavaScript code when a resize event occurs; that is, when a user or script resizes a window or frame.
	Event handler for
	Window

	Implemented in
	Navigator 4.0

Syntax
onResize="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

	width, height
	Represent the width and height of the window or frame.

Description
This event is sent after HTML layout completes within the new window inner dimensions. This allows positioned elements and named anchors to have their final sizes and locations queried, image SRC properties can be restored dynamically, and so on.
onSelect
Executes JavaScript code when a select event occurs; that is, when a user selects some of the text within a text or textarea field.
	Event handler for
	Text, Textarea

	Implemented in
	Navigator 2.0

Syntax
onSelect="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

Examples
The following example uses onSelect in the valueField Text object to call the selectState function.
<INPUT TYPE="text" VALUE="" NAME="valueField" onSelect="selectState()">
onSubmit
Executes JavaScript code when a submit event occurs; that is, when a user submits a form.
	Event handler for
	Form

	Implemented in
	Navigator 2.0

Syntax
onSubmit="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Security
Navigator 4.0: Submitting a form to a mailto: or news: URL requires the UniversalSendMail privilege. For information on security in Navigator 4.0, see Chapter 7, "JavaScript Security," in the JavaScript Guide.
Description
You can use onSubmit to prevent a form from being submitted; to do so, put a return statement that returns false in the event handler. Any other returned value lets the form submit. If you omit the return statement, the form is submitted.
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

Examples
In the following example, onSubmit calls the validate function to evaluate the data being submitted. If the data is valid, the form is submitted; otherwise, the form is not submitted.
<FORM onSubmit="return validate(this)">
...
</FORM>
onUnload
Executes JavaScript code when an unload event occurs; that is, when the user exits a document.
	Event handler for
	Window

	Implemented in
	Navigator 2.0

Syntax
onUnload="handlerText"
Parameters
	handlerText
	JavaScript code or a call to a JavaScript function.

Description
Use onUnload within either the BODY or the FRAMESET tag, for example, <BODY onUnload="...">.
In a frameset and frame relationship, an onUnload event within a frame (placed in the BODY tag) occurs before an onUnload event within the frameset (placed in the FRAMESET tag).
Event properties used
	type
	Indicates the type of event.

	target
	Indicates the object to which the event was originally sent.

Examples
In the following example, onUnload calls the cleanUp function to perform some shutdown processing when the user exits a Web page:
<BODY onUnload="cleanUp()">

[bookmark: _GoBack]

Page No:317
image2.wmf

oleObject1.bin
[image: image1.png]<HED><TITLE®A Simple Documents/TITLE>
<SCRIPTS
funetion update (form) ¢
alert (+Farm being updated")
)
</serTET>
</HERD>
<BoDY>
<FORM NAME="Iy form" ACTION:
METHOD="gat" >
Enter a values

tart.hm

</FoRu>
</moDY>

Internet.

mypage herl

Pt s [Pt Vil

rPE——

il

) T

image3.png
function Substitute(guess, word, answer) {
Ver result

word length;

ver len
var pos = 0
while(pos ¢ len) (

ver word_chat - word substring(pos, pos + 1);
Vir Anemarohar = ancver. substringl o, pos 4 1);
12 ('mord Shar == guess) result o rasult + guess;
1=l Tomlt o result o snswer shar;

Bos = pos + 1

)
)

argan 35

CHNL, (EAD, (TTTLE, Manguan </TTTLE> /HEAD:
DL, M Hanguan <KL

ir (orient gumemo — maty ¢
Glient.gammo - 1
Clien mewgeme = ruer
B
<ysemvens
93 have used the folloming letters so far
<sERvERrite(cLiems ueen) </seavEns
CFORY HETOD- post" ACTION- anguan hta">
&
it iz your guess?
CINPUT TYPEL" fext” NAE-"quess” SIZE="1%>

<rionys </

haraman btm

veturn result; .

rc—

Sppliation

Compikr

ieb il
(byacade

exacuab)

image7.png
JavaScript Alert:
Please enter a name that is 8 characters or less.

oK

image8.png
JavaScript Confirm:
Are you sure you want to quit this application?

©K | [cancel]

image9.png
= Netscape User Prompt

JavaSeipt Prompt: [
Eterthe rumber of cookies you want ta order

12 Cancel

image4.png
il ipt | <HTUL> HEAD> (TITLE> Hangwanc /TTTLE> < /> KEAD>
Webfile | JevaSeript | Gony G kanaman </k0s
(bytecode [~ runtime | vou have used the folloming letters so far

Internet

executsble)| engine [s A¥
CEORI UETHOD="post” ACTION-"banguan. beud">
@
st 15 your guess?
CINPUY THPE-tert” NATE-guess” 512

<7Bomts < ms

ety o~
Fe kb Yoo 5o Geknsks i iy Sion

) e

ey gt

o e 0y gl s

Al [Dou

image10.png
User name:

Netscape - [Login] |2

-

kkelley

Password:

Button object

Cancel

image11.png
A Netscape - Join the music clubl] 3

-

First name: | Jesse

Last name: |Schacter

Shipping Music types for
method: your free CDs:
2-day +

B3 Send catalog

| Chedkbox object

image12.png
[=| Netscape on Contest] -

Thanks for entering the writing contest!

First name: |Michelle Last name: | Spangler
File containing your entry:
CATEMPSOXHTML | {Biawse.)

Submit

FileUpload
object

image13.png
ENetscap J{ICIDATAICLIENT/...APHICS/SOURI S

Choice 1 [3]

New text for the option:
Option to change (0, 1, or 2).

Change Selection

image14.png
User name:

Netscape - [Login] |2

-

kkelley

Password:

Password object

image15.png
Netscape - [Update Product Information] -

-

Product number: |5250| Name: |otcoman

Categos @ Living O Bath “
© Dining O Garden Radio
O Bedroom O Shop J object

Description:

Our storage ottoman provides an attractive way to |
store lots of CDs and videos—-and it's versatile
enough to store other things as well.

It can hold up to 72 CDs under the lid and 20 vide
in the drawer below.

<

image16.png
Netscape - [Update Product Information] -

-

Product number: [5250] Name: [ottoman

Category: @ Living O Bath
O Dining O Garden
O Bedroom O Shop
Description:

Our storage ottoman provides an attractive way to |

store lots of CDs and videos—-and it's versatile

enough to store other things as well.

It can hold up to 72 CDs under the lid and 20 vide
in the drawer below.

<

Reset Values

[Reset object.

image17.png
Netscape - [Join the music club}

First name: | Jesse

Last name: |Schacter

Shipping Music types for

method: your free CDs:

2-day 3] Select object
allowing multiple
selections.
Select object

[Send catalog allowing only

one selection

Cancel

image18.png
-

Netscape - [Login] |2

User name: | ke lley

Password: [Frrrrreee

Subrmit object

image19.png
User name:

Netscape - [Login] |2

-

kkelley

Text object

Password:

image20.png
[=| Netscape - [Update Product Information] -

-

Product number: |5250| Name: |otcoman

Category: @ Living O Bath
O Dining O Garden
O Bedroom O Shop
Description:

Our storage ottoman provides an attractive way to |

store lots of CDs and videos—-and it's versatile

enough to store other things as well.

It can hold up to 72 CDs under the lid and 20 vide
in the drawer below.

<

Textares
object

image5.png
Window Texturea navigator
Text Plugin
Frame Layer FileUpload MimeType
Link Pasaword
document Image Hidden
Area Submit
Anchor Reset
Location
Popler Radio
Plugin Chedcbox
History
Form Buron
Select Option

image6.png
Cursor

DbFool Connection
Stproc Resultset
Cursor
database
Stproc Resultset

image1.png
CLIENT-SIDE JAVASCRIPT

Client-side
additions Server-side
(such as window addiions
and history) (such as server
and database
= = Corelanguage
feamres (such

as variables,
functions, and

LiveConnect)

Serverside

\—'—1

SERVER-SIDE JAVASCRIPT

